Home > Press > Ultracold atoms used to verify 1963 prediction about 1D electrons: Rice University, University of Geneva study focuses on theory that's increasingly relevant to chipmakers
![]()  | 
| Using ultracold lithium atoms confined by intersecting laser beams, physicists from Rice University and the University of Geneva confirmed a 1963 prediction that the charge wave from an excited electron moves faster in a one-dimensional electron gas as interaction strength between the electrons increases. CREDIT Jeff Fitlow/Rice University | 
Abstract:
Rice University atomic physicists have verified a key prediction from a 55-year-old theory about one-dimensional electronics that is increasingly relevant thanks to Silicon Valley's inexorable quest for miniaturization.
"Chipmakers have been shrinking feature sizes on microchips for decades, and device physicists are now exploring the use of nanowires and nanotubes where the channels that electrons pass through are almost one-dimensional," said Rice experimental physicist Randy Hulet. "That's important because 1D is a different ballgame in terms of electron conductance. You need a new model, a new way of representing reality, to make sense of it."
With IBM and others committed to incorporating one-dimensional carbon nanotubes into integrated circuits, chip designs will increasingly need to account for 1D effects that arise from electrons being fermions, antisocial particles that are unwilling to share space.
The 1D implications of this standoffishness caught the attention of physicists Sin-Itiro Tomonaga and J.M. Luttinger, whose model of 1D electron behavior was published in 1963. A key prediction of Tomonaga-Luttinger liquid (TLL) theory is that exciting one electron in a 1D wire leads to a collective, organized response from every electron in the wire.
Stranger still, because of this collective behavior, TLL theory predicts that a moving electron in 1D will seemingly split in two and travel at different speeds, despite the fact that electrons are fundamental particles that have no constituent parts. This strange breakup, known as spin-charge separation, instead involves two inherent properties of the electron -- negative charge and angular momentum, or "spin."
In a study online this week in Physical Review Letters, Hulet, University of Geneva theoretical physicist Thierry Giamarchi and their colleagues used another type of fermion -- ultracold lithium atoms cooled to within 100 billionths of a degree of absolute zero -- to both verify the predicted speed that charge waves move in 1D and offer confirmation that 1D charge waves increase their speed in proportion to the strength of the interaction between them.
"In a one-dimensional wire, electrons can move to the left or to the right, but they cannot go around other electrons," said Hulet, Rice's Fayez Sarofim Professor of Physics. "If you add energy to the system, they move, but because they're fermions and can't share space, that movement, or excitation, causes a kind of chain reaction.
"One electron moves, and it nudges the next one to move and the one next to that one and so on, causing the energy you've added to move down the wire like a wave," Hulet said. "That single excitation has created a ripple everywhere in the wire."
In their experiments, Hulet's team used lithium atoms as stand-ins for electrons. The atoms are trapped and slowed with lasers that oppose their motion. The slower they go, the colder the lithium atoms become, and at temperatures far colder than any in nature, the atoms behave like electrons. More lasers are used to form optical waveguides, one-dimensional tubes wide enough for just one atom. Despite the effort needed to create these conditions, Hulet said the experiments offer a big advantage.
"We can use a magnetic field in our experiment to tune the strength of the repulsive interaction between the lithium atoms," Hulet said. "In studying these collective, or correlated electron behaviors, interaction strength is an important factor. Stronger or weaker electron interactions can produce wholly different effects, but it's extraordinarily difficult to study this with electrons because of the inability to directly control interactions. With ultracold atoms, we can essentially dial the interaction strength to any level we want and watch what happens."
While previous groups have measured the speed of collective waves in nanowires and in gases of ultracold atoms, none had measured it as a function of interaction strength, Hulet said.
"Charge excitations are predicted to move faster with increasing interaction strength, and we showed that," he said. "Thierry Giamarchi, who literally wrote the book on this topic, used TLL theory to predict how the charge wave would behave in our ultracold atoms, and his predictions were borne out in our experiments."
Having that ability to control interactions also sets the stage for testing the next TLL prediction: The speed of charge waves and spin waves diverge with increasing interaction strength, meaning that as electrons are made to repel one another with greater force, charge waves will travel faster and spin waves will travel slower.
Now that the team has verified the predicted behavior of charge waves, Hulet said they next plan to measure spin waves to see if they behave as predicted.
"The 1D system is a paradigm for strongly correlated electron physics, which plays a key role in many things we'd like to better understand, like high-temperature superconductivity, heavy fermion materials and more," Hulet said.
###
Hulet also is a member of the Rice Center for Quantum Materials. Giamarchi is a professor of condensed matter physics at the University of Geneva and a permanent member of the French National Center for Scientific Research.
Additional study co-authors include Rice graduate student Ya-Ting Chang; former Rice graduate students Tsung-Lin Yang, the study's lead author, and Zhenghao Zhao; former Rice visiting student researcher Chung-You Shih; and former University of Geneva research scientist Pjotrs Grisins. The research was supported by the Army Research Office's Multidisciplinary University Research Initiative, the Office of Naval Research, the National Science Foundation and the Swiss National Science Foundation.
The DOI of the Physical Review Letters paper is: 10.1103/PhysRevLett.121.103001
####
About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,970 undergraduates and 2,934 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview .
Follow Rice News and Media Relations via Twitter @RiceUNews.
For more information, please click here
Contacts:
David Ruth
713-348-6327
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links | 
 A copy of the paper is available at:
| Related News Press | 
Superconductivity
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Physics
    Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
    A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
    Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025
Govt.-Legislation/Regulation/Funding/Policy
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Possible Futures
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Chip Technology
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
    Programmable electron-induced color router array May 14th, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
    Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
    Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
    Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Nanoelectronics
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
    Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
    Reduced power consumption in semiconductor devices September 23rd, 2022
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Military
    Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
    Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
    Single atoms show their true color July 5th, 2024
    NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
    Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
    New discovery aims to improve the design of microelectronic devices September 13th, 2024
    Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Research partnerships
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||