Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Ultracold atoms used to verify 1963 prediction about 1D electrons: Rice University, University of Geneva study focuses on theory that's increasingly relevant to chipmakers

Using ultracold lithium atoms confined by intersecting laser beams, physicists from Rice University and the University of Geneva confirmed a 1963 prediction that the charge wave from an excited electron moves faster in a one-dimensional electron gas as interaction strength between the electrons increases.

CREDIT
Jeff Fitlow/Rice University
Using ultracold lithium atoms confined by intersecting laser beams, physicists from Rice University and the University of Geneva confirmed a 1963 prediction that the charge wave from an excited electron moves faster in a one-dimensional electron gas as interaction strength between the electrons increases. CREDIT Jeff Fitlow/Rice University

Abstract:
Rice University atomic physicists have verified a key prediction from a 55-year-old theory about one-dimensional electronics that is increasingly relevant thanks to Silicon Valley's inexorable quest for miniaturization.

Ultracold atoms used to verify 1963 prediction about 1D electrons: Rice University, University of Geneva study focuses on theory that's increasingly relevant to chipmakers

Houston, TX | Posted on September 5th, 2018

"Chipmakers have been shrinking feature sizes on microchips for decades, and device physicists are now exploring the use of nanowires and nanotubes where the channels that electrons pass through are almost one-dimensional," said Rice experimental physicist Randy Hulet. "That's important because 1D is a different ballgame in terms of electron conductance. You need a new model, a new way of representing reality, to make sense of it."

With IBM and others committed to incorporating one-dimensional carbon nanotubes into integrated circuits, chip designs will increasingly need to account for 1D effects that arise from electrons being fermions, antisocial particles that are unwilling to share space.

The 1D implications of this standoffishness caught the attention of physicists Sin-Itiro Tomonaga and J.M. Luttinger, whose model of 1D electron behavior was published in 1963. A key prediction of Tomonaga-Luttinger liquid (TLL) theory is that exciting one electron in a 1D wire leads to a collective, organized response from every electron in the wire.

Stranger still, because of this collective behavior, TLL theory predicts that a moving electron in 1D will seemingly split in two and travel at different speeds, despite the fact that electrons are fundamental particles that have no constituent parts. This strange breakup, known as spin-charge separation, instead involves two inherent properties of the electron -- negative charge and angular momentum, or "spin."

In a study online this week in Physical Review Letters, Hulet, University of Geneva theoretical physicist Thierry Giamarchi and their colleagues used another type of fermion -- ultracold lithium atoms cooled to within 100 billionths of a degree of absolute zero -- to both verify the predicted speed that charge waves move in 1D and offer confirmation that 1D charge waves increase their speed in proportion to the strength of the interaction between them.

"In a one-dimensional wire, electrons can move to the left or to the right, but they cannot go around other electrons," said Hulet, Rice's Fayez Sarofim Professor of Physics. "If you add energy to the system, they move, but because they're fermions and can't share space, that movement, or excitation, causes a kind of chain reaction.

"One electron moves, and it nudges the next one to move and the one next to that one and so on, causing the energy you've added to move down the wire like a wave," Hulet said. "That single excitation has created a ripple everywhere in the wire."

In their experiments, Hulet's team used lithium atoms as stand-ins for electrons. The atoms are trapped and slowed with lasers that oppose their motion. The slower they go, the colder the lithium atoms become, and at temperatures far colder than any in nature, the atoms behave like electrons. More lasers are used to form optical waveguides, one-dimensional tubes wide enough for just one atom. Despite the effort needed to create these conditions, Hulet said the experiments offer a big advantage.

"We can use a magnetic field in our experiment to tune the strength of the repulsive interaction between the lithium atoms," Hulet said. "In studying these collective, or correlated electron behaviors, interaction strength is an important factor. Stronger or weaker electron interactions can produce wholly different effects, but it's extraordinarily difficult to study this with electrons because of the inability to directly control interactions. With ultracold atoms, we can essentially dial the interaction strength to any level we want and watch what happens."

While previous groups have measured the speed of collective waves in nanowires and in gases of ultracold atoms, none had measured it as a function of interaction strength, Hulet said.

"Charge excitations are predicted to move faster with increasing interaction strength, and we showed that," he said. "Thierry Giamarchi, who literally wrote the book on this topic, used TLL theory to predict how the charge wave would behave in our ultracold atoms, and his predictions were borne out in our experiments."

Having that ability to control interactions also sets the stage for testing the next TLL prediction: The speed of charge waves and spin waves diverge with increasing interaction strength, meaning that as electrons are made to repel one another with greater force, charge waves will travel faster and spin waves will travel slower.

Now that the team has verified the predicted behavior of charge waves, Hulet said they next plan to measure spin waves to see if they behave as predicted.

"The 1D system is a paradigm for strongly correlated electron physics, which plays a key role in many things we'd like to better understand, like high-temperature superconductivity, heavy fermion materials and more," Hulet said.

###

Hulet also is a member of the Rice Center for Quantum Materials. Giamarchi is a professor of condensed matter physics at the University of Geneva and a permanent member of the French National Center for Scientific Research.

Additional study co-authors include Rice graduate student Ya-Ting Chang; former Rice graduate students Tsung-Lin Yang, the study's lead author, and Zhenghao Zhao; former Rice visiting student researcher Chung-You Shih; and former University of Geneva research scientist Pjotrs Grisins. The research was supported by the Army Research Office's Multidisciplinary University Research Initiative, the Office of Naval Research, the National Science Foundation and the Swiss National Science Foundation.

The DOI of the Physical Review Letters paper is: 10.1103/PhysRevLett.121.103001

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,970 undergraduates and 2,934 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview .

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:
David Ruth

713-348-6327

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A copy of the paper is available at:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Superconductivity

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project