Home > Press > Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria
![]() |
Macromolecular shielding of microorganisms using polymer conjugated antibodies. These pictures show transmission electron microscopy images of bare (left) and fully shielded (right) bacteria. |
Abstract:
Researchers from the University of Minnesota (UMN) have developed a method to screen and identify harmful or antibiotic-resistant bacteria within one hour using a portable luminometer. Traditional diagnostic methods often require complex equipment and lab work that can take days. The new method uses chemiluminescence, or the emission of light during a chemical reaction. It was developed with the food industry in mind and could also be used in healthcare settings.
In a study published in Advanced Healthcare Materials, researchers from the College of Food, Agricultural and Natural Resource Sciences and the College of Science and Engineering at UMN demonstrated the new technology by analyzing surface swabs and urine samples for the presence of small concentrations of methicillin-resistant Staphylococcus aureus (MRSA), a bacteria that causes more than 11,000 deaths in the U.S. every year.
"A big barrier for microbial detection in the food industry is cost and the inability to detect harmful bacteria in a reasonable time," said John Brockgreitens, a graduate student involved in the study from the Department of Bioproducts and Biosystems Engineering. "We're trying to develop an inexpensive and rapid way for microbial detection that can be used without needing extensive training."
To screen for microorganisms, green gold in the form of triangular nanoplates was combined with a reducing agent and luminol. This caused a strong chemiluminescent reaction that was stable for as long as 10 minutes. When researchers introduced MRSA and other microorganisms into the combination, they consumed the gold nanoplates, causing the chemiluminescent intensity to decrease proportionally to the microbial concentration. This indicated a presence of microorganisms.
"Rapid microbial detection in less than two hours is not only vital to prevent food poisoning, but also to fight antimicrobial resistance by helping physicians make informed decisions before prescribing antibiotics," said Abdennour Abbas, a professor in the Department of Bioproducts and Biosystems Engineering, who directed the research. "More work is needed to apply this technology to more complex samples such as food and crops, but we're hopeful that progress will continue in this area."
Researchers also introduced a new concept called microbial macromolecular shielding to specifically identify MRSA. A polymer specific to MRSA was added to the same sample where it engulfed and surrounded the MRSA bacteria, preventing them from consuming the gold nanoplates. This increased chemiluminescence intensity, indicating the presence of MRSA.
More research is needed before the method can be used in real-world applications, but researchers are eager to make this process faster and easier for industry use.
"In the food industry, items like processed meat, cheese, yogurt and milk have a lot of other competing parts such as proteins and other cells that you need to effectively filter out before you could detect what you're looking for," Brockgreitens said. "We know our direction is to keep looking at some of these cellular interactions and how to make this whole process either automated or a one-step process."
###
This research was funded by the National Science Foundation Award No. 1605191, the University of Minnesota MnDRIVE Global Food Venture, the USDA National Institute of Food and Agriculture Hatch project 1006789, General Mills, the Schwan's Company Graduate Fellowship, and the Midwest Dairy Association.
Disclaimer
####
For more information, please click here
Contacts:
Nkauj (pronounced 'gow') Vang
612-624-1293
Copyright © University of Minnesota
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Food/Agriculture/Supplements
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Nanobiotechnology
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |