Home > Press > Researchers use nanotechnology to improve the accuracy of measuring devices
Abstract:
Scientists from Higher school of economics and the Federal Scientific Research Centre 'Crystallography and Photonics' have synthesized multi-layered nanowires in order to study their magnetoresistance properties. Improving this effect will allow scientists to increase the accuracy of indicators of various measuring instruments, such as compasses and radiation monitors. The results of the study have been published in the paper 'Structure of Cu/Ni Nanowires Obtained by Matrix Synthesis.'
One of the unique features of artificial nanostructures is the giant magnetoresistance effect in thin layers of metal. This effect is exploited in various electronic devices.
The scientists synthesized multi-layered copper and nickel nanowires, in order to study their characteristics, which depend on the layers' composition and geometry. 'We expect that the transition to multi-layered nanowires will increase the giant magnetoresistance effect considerably. Today, we are 'choosing' the method of nanowire synthesis, in order to get this effect', said Ilia Doludenko, Moscow Institute of Electronics and Mathematics (MIEM HSE) graduate and one of the authors.
To determine the correlation between the synthesis parameters and the crystal structure, the scholars synthesized nanowires of different lengths. The nanowire length was determined by the number of deposition cycles; one nickel layer and one copper layer were deposited in each cycle. The size of the nanowires was determined using a scanning electron microscope (SEM). The number of pairs of layers in the nanowires was found to be 10, 20, or 50, according to the number of electrodeposition cycles.
When the length of the nanowire was compared to the number of layers, it turned out that the relationship between the nanowire length and the number of layers was nonlinear. The average lengths of the nanowires composed of 10, 20, and 50 pairs of layers were, respectively, 1.54 μm, 2.6 μm, and 4.75 μm. The synthesized nanowires all had a grain structure with crystallites of different sizes, from 5-20 nm to 100 nm. Large, bright reflections were mainly due to metals (Ni and Cu) while diffuse rings and small reflections are generally related to the presence of copper oxides.
An elemental analysis confirmed the presence of alternating Ni and Cu layers in all of the nanowires in the study. However, the mutual arrangement of layers may differ. Ni and Cu layers in the same nanowire may be oriented perpendicular to its axis or be at a particular angle. The individual units of the same nanowire may have different thicknesses. The thickness of individual units in nanowires is in the range of 50-400 nm.
According to the study authors, this heterogeneity depends on the parameters of the pore and decreases closer to the pore mouth. This leads to an increase in current, enhancement of deposition rate, and, as a result, an increase in the deposited layer thickness. Another possible reason is the difference in the diffusion mobilities of ions of different metals. This explains the nonlinear relationship between the nanowire length and the number layers mentioned above. The study of the composition of particular units demonstrated that copper units consist mainly of copper, while nickel is almost entirely absent. Nickel units, on the other hand, always contain a certain amount of copper. This amount may sometimes be as high as 20%.
The relevance of these findings relates to the potential creation of more accurate and cheaper detectors of motion, speed, position, current and other parameters. Such instruments could be used in the car industry, or to produce or improve medical devices and radiation monitors and electronic compasses.
####
For more information, please click here
Contacts:
Liudmila Mezentseva
7-926-313-2406
Copyright © National Research University Higher School of Economics
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Paper 'Structure of Cu/Ni Nanowires Obtained by Matrix Synthesis.':
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Automotive/Transportation
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||