Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers use nanotechnology to improve the accuracy of measuring devices

Abstract:
Scientists from Higher school of economics and the Federal Scientific Research Centre 'Crystallography and Photonics' have synthesized multi-layered nanowires in order to study their magnetoresistance properties. Improving this effect will allow scientists to increase the accuracy of indicators of various measuring instruments, such as compasses and radiation monitors. The results of the study have been published in the paper 'Structure of Cu/Ni Nanowires Obtained by Matrix Synthesis.'

Researchers use nanotechnology to improve the accuracy of measuring devices

Moscow, Russia | Posted on July 24th, 2018

One of the unique features of artificial nanostructures is the giant magnetoresistance effect in thin layers of metal. This effect is exploited in various electronic devices.

The scientists synthesized multi-layered copper and nickel nanowires, in order to study their characteristics, which depend on the layers' composition and geometry. 'We expect that the transition to multi-layered nanowires will increase the giant magnetoresistance effect considerably. Today, we are 'choosing' the method of nanowire synthesis, in order to get this effect', said Ilia Doludenko, Moscow Institute of Electronics and Mathematics (MIEM HSE) graduate and one of the authors.

To determine the correlation between the synthesis parameters and the crystal structure, the scholars synthesized nanowires of different lengths. The nanowire length was determined by the number of deposition cycles; one nickel layer and one copper layer were deposited in each cycle. The size of the nanowires was determined using a scanning electron microscope (SEM). The number of pairs of layers in the nanowires was found to be 10, 20, or 50, according to the number of electrodeposition cycles.

When the length of the nanowire was compared to the number of layers, it turned out that the relationship between the nanowire length and the number of layers was nonlinear. The average lengths of the nanowires composed of 10, 20, and 50 pairs of layers were, respectively, 1.54 μm, 2.6 μm, and 4.75 μm. The synthesized nanowires all had a grain structure with crystallites of different sizes, from 5-20 nm to 100 nm. Large, bright reflections were mainly due to metals (Ni and Cu) while diffuse rings and small reflections are generally related to the presence of copper oxides.

An elemental analysis confirmed the presence of alternating Ni and Cu layers in all of the nanowires in the study. However, the mutual arrangement of layers may differ. Ni and Cu layers in the same nanowire may be oriented perpendicular to its axis or be at a particular angle. The individual units of the same nanowire may have different thicknesses. The thickness of individual units in nanowires is in the range of 50-400 nm.

According to the study authors, this heterogeneity depends on the parameters of the pore and decreases closer to the pore mouth. This leads to an increase in current, enhancement of deposition rate, and, as a result, an increase in the deposited layer thickness. Another possible reason is the difference in the diffusion mobilities of ions of different metals. This explains the nonlinear relationship between the nanowire length and the number layers mentioned above. The study of the composition of particular units demonstrated that copper units consist mainly of copper, while nickel is almost entirely absent. Nickel units, on the other hand, always contain a certain amount of copper. This amount may sometimes be as high as 20%.

The relevance of these findings relates to the potential creation of more accurate and cheaper detectors of motion, speed, position, current and other parameters. Such instruments could be used in the car industry, or to produce or improve medical devices and radiation monitors and electronic compasses.

####

For more information, please click here

Contacts:
Liudmila Mezentseva

7-926-313-2406

Copyright © National Research University Higher School of Economics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper 'Structure of Cu/Ni Nanowires Obtained by Matrix Synthesis.':

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Automotive/Transportation

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project