Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms

Abstract:
Deben, a leading provider of in-situ testing stages together with innovative accessories and components for electron microscopy, reports on how the University of Tsukuba team of Professor Jun-Ichi Fujita have developed a method to visualise local fields at relatively low beam voltages using the Deben ARM2-STEM detector.

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms

Woolpit, UK | Posted on June 27th, 2018

Jun-Ichi Fujita is a Professor in the Institute of Applied Physics at the University of Tsukuba and a member of the Tsukuba Research Centre for Interdisciplinary Materials Science (TIMS). He presented this work at the 61st International Conference on Electron, Ion and Photon Beam Technology & Nanofabrication, where he demonstrated high sensitivity visualisation of localised electric fields using low energy electron beam deflection. This is of particular value to those working in the development of alkaline fuel cells for automobiles.

Professor Fujita describes his work: “The goal of our research project is to clarify the catalytic reaction mechanism and to improve the reaction efficiency for various applications such as fuel cell, dehydrogenation from methane, etc. The catalytic reaction realized on a nanoparticle should cause charge localization on a specific point. The localized charge creates a strong local field and such the strong electrostatic field could reduce the transition barrier of adsorbed molecules. Many researchers never doubted this reaction principle, but no one had ever demonstrated the real space imaging. We think our imaging technique contributes to the field of electrochemistry from our position as analytical physicists.”

Previous methods have employed electron holography in a transmission electron microscope but now Professor Fujita has demonstrated this performance using a low magnification scanning electron microscope, (Hitachi S-4800).1 This required instrument development, in particular, to improve the sensitivity of detection. This need led to collaboration with Deben and the use of their ARM2-STEM detector. Previously, Fujita's team had used conventional photomultiplier detectors with a gold grid line to measure the deflection angle of the primary electron beam. However, as the deflection angle is inversely proportional to the beam energy, their results were not clear. The ARM2-STEM detector overcame this.

Part of the work is described here with the image from the paper published with the permission of the authors shown below. It shows the analysis method for the local field intensity. (a) Original STEM image, and (b) brightness profile along the yellow line in (a). The impact parameter b was defined by the position B having 50% of the brightness level (128). (c) Contour of the deflection shadow occupying 50% intensity of brightness. (d) Contour mapping of 20, 13, and 8 V/μm field intensities by superimposing the contours determined from different acceleration voltages of 2.5, 2.4, and 2.3 kV, respectively. Upper quadrant is FEM simulation. (e) Contour mapping of 200, 100, 50, 20, and 10 V/μm field intensities derived from a single STEM image and point charge model.1

####

About Deben
Deben are a UK precision engineering company specialising in the field of in-situ tensile testing, motion control and specimen cooling for microscopy applications. Established in 1986 and named after a Suffolk river, Deben now operate from a large, modern business unit in Woolpit near Bury St. Edmunds in Suffolk. The product groups are motor control systems, in-situ micro-tensile stages, Peltier heating & cooling stages, detectors for SEMs and electro-static beam blankers. The company also makes custom and OEM versions of these products to specifically meet customer requirements.

Deben provide consultancy, design and prototype manufacturing services. In house facilities include SolidWorks and SolidEdge 3D CAD and COSMOS finite element analysis software, CNC machining, electronics design and manufacture and software design using Visual C++, Microsoft.net and DirectX. Utilising these resources and experience, Deben manufacture products for OEMs and end users in the UK and overseas.

Deben UK Ltd. is a subsidiary company of UK based Judges Scientific plc. For details on Deben and all its products & solutions, visit www.deben.co.uk.

For more information, please click here

Contacts:
Deben UK Limited
Brickfields Business Park
Old Stowmarket Road
Woolpit, Bury St Edmunds
Suffolk IP30 9QS, UK
T +44 (0)1359 244870
www.deben.co.uk


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA
T +44(0)1799 521881
M +44(0)7843 012997
www.talking-science.com

Copyright © Deben

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference

Related News Press

Chemistry

Quantum interference in molecule-surface collisions February 28th, 2025

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project