MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New optical sensor can determine if molecules are left or right 'handed'

A University of Central Florida team has designed a nanostructured optical sensor that for the first time can efficiently detect molecular chirality -- a property of molecular spatial twist that defines its biochemical properties.
CREDIT
University of Central Florida: Karen Norum
A University of Central Florida team has designed a nanostructured optical sensor that for the first time can efficiently detect molecular chirality -- a property of molecular spatial twist that defines its biochemical properties. CREDIT University of Central Florida: Karen Norum

Abstract:
A University of Central Florida team has designed a nanostructured optical sensor that for the first time can efficiently detect molecular chirality - a property of molecular spatial twist that defines its biochemical properties.

New optical sensor can determine if molecules are left or right 'handed'

Orlando, FL | Posted on June 13th, 2018

Determining chirality is critical for new drug development.

Think of molecules as having little hands. They are not identical, but they serve almost undistinguishable functions. You can grip, pinch, punch and open your hands, regardless of whether you use your left or right hand. But when you get to some functions, such as writing, it matters if you are right-handed or left-handed.

Scientists have struggled to determine if molecules have unique left- or right-hand functions because their physical attributes such as length, weight, density, elasticity, etc. appear to be identical.

UCF's NanoScience Technology Center Associate Professor Debashis Chanda and Ph.D. student Abraham Vazquez-Guardado have figured out a unique way to do it. The interaction between light and the specially designed nanostructure they built creates a strong chiral light field - called superchiral light. Such a nanostructure does not have geometrical chirality yet it creates two opposite light chirality (left or right) on demand. When light and matter's chirality match, just as hand-shaking with our right hand, successful identification happens. Therefore, this rotating light field has the ability to probe and identify any chiral molecule like drugs, proteins or DNAs. The light field lets scientist see the tiny hands, so to speak.

"Chirality detection is vital in the drug-development industry, where newly synthesized chiral drugs also have two-handed strands and always form with the same likeliness during the synthesis process," Chanda said. "But while one chiral strand constitutes the active element in the drug, its opposite can turn out to be toxic or render detrimental side effects. Consequently, pharmacological and toxicological characterization of chirality plays a crucial role in the pharmaceutical drug industry and FDA approval process."

By being able to detect chirality at this level, scientists will have a better way to identify what may be causing bad side effects or perhaps finding places to upload life-saving drugs.

In this preliminary study, the UCF team demonstrated chiral molecule-detection sensitivity that is four times higher compared to the conventional technique, but without the extensive and tedious sample preparation and at much lower sample volume.

The single optical element thin-film chirality sensor, when fabricated based on low cost and large-area nanoimprinting technique, will immensely benefit drug design and protein-conformation identification, both of paramount importance in treating and understanding several diseases, Chanda added.

###

The Florida Space Institute/NASA, Northrop Grumman Corporation and DARPA help fund the research.

####

About University of Central Florida
Founded in 1963 with a commitment to expanding opportunity and demanding excellence, the University of Central Florida develops the talent needed to advance the prosperity and welfare of our society. With more than 66,000 students, UCF is one of the nation's largest universities, offering more than 200 degree programs at its main campus in Orlando and more than a dozen other locations in Central Florida and online. UCF was ranked by U.S. News & World Report as among the nation's top 25 most innovative universities along with Harvard, Stanford and Duke, and has been described by The Washington Post as "part of a vanguard that is demolishing the popular belief that exclusivity is a virtue in higher education." For more information, visit ucf.edu.

For more information, please click here

Contacts:
Zenaida Gonzalez Kotala
zenaida.kotala@ucf.edu
407-823-6120

Copyright © University of Central Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Their findings were recently published in the Physical Review Letters journal (PRL, 120, 137601, 2018):

Related News Press

News and information

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Nanomedicine

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Sensors

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Discoveries

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Nanobiotechnology

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Photonics/Optics/Lasers

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project