Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Engineered polymer membranes could be new option for water treatment

William Phillip, associate professor in the Department of Chemical and Biomolecular Engineering at Notre Dame.
CREDIT
Matt Cashore/University of Notre Dame
William Phillip, associate professor in the Department of Chemical and Biomolecular Engineering at Notre Dame. CREDIT Matt Cashore/University of Notre Dame

Abstract:
The world's freshwater resources are in short supply. According to the United Nations, water scarcity affects an estimated 1.9 billion people and 2.1 billion people live with drinking water services that are not safely managed. The critical point of water scarcity has led scientists to look for new and efficient ways to make the most of nontraditional sources, including sea water, brackish water and wastewater.

Engineered polymer membranes could be new option for water treatment

Notre Dame, IN | Posted on May 6th, 2018

Polymer membranes, which act as a filter to desalinate and selectively remove contaminants from various water sources, have aided water treatment, but their selectivity remains a significant challenge when it comes to filtering chemical properties -- a potential risk to the environment and human health.

Chemical and biomolecular engineers at the University of Notre Dame and Purdue University studied self-assembled block polymer membranes, which allow for both customizable and uniform pore sizes, as a platform for water treatment systems. The study, published in Nature Partner Journals -- Clean Water, determined the platform has the potential to advance water treatment technologies.

"Most state-of-the-art membranes for water treatment are designed to let water pass through while filtering contaminants," said William Phillip, associate professor in the Department of Chemical and Biomolecular Engineering at Notre Dame. "This approach limits the ability to remove or recover dissolved species based on their chemical identity. The exciting thing about self-assembled block polymer membranes is that you can engineer the nanostructure and pore wall chemistry of the membrane through the design of the block polymer molecules. This capability has the potential to open up a variety of new separation mechanisms that can isolate species based on chemical identity, which in turn could help to enable decentralized reuse of wastewater."

Phillip and the research team focused on block polymer membranes because of their well-defined nanostructures and functionality. They were able to molecularly engineer the chemical properties of the polymer to create large areas of high-performance membrane, reduce pore size and design multifunctional pore wall chemistries for solute-specific separation. The membranes could essentially be customized depending on the water source and treatment needed.

Membranes that are more selective and more resilient to certain exposures such as chlorine or boric acid and less prone to collecting unwanted properties -- or fouling -- than current state-of-the-art options could improve treatment in a number of ways. They could reduce the number of filtration passes required for irrigation, control concentrations of chlorine into the system to help forestall effects of biofouling and reduce chemical demands for membrane cleaning -- reducing operating costs and environmental impact.

The global applications are significant when considering those populations without suitable drinking water and limited resources.

Transitioning the technology from the laboratory setting to practice presents its own set of challenges that will need to be addressed in the coming years. However, the researchers are hopeful the transition can be made since several of the techniques used to generate self-assembled block polymers are consistent with current membrane fabrication practices.

###

Authors of the study include Yizhou Zhang and Jacob L. Weidman at Notre Dame and Noelia E. Almodovar-Arbelo, David S. Corti and Bryan W. Boudouris at Purdue University.

The Army Research Office and the National Science Foundation funded the study.

####

For more information, please click here

Contacts:
Jessica Sieff

574-631-3933

Copyright © University of Notre Dame

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Environment

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

New gel could boost coral reef restoration: The substance, applied to surfaces as a coating, improved coral larvae settlement by up to 20 times in experiments compared to untreated surfaces May 16th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project