Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Research gives new ray of hope for solar fuel

Research gives new ray of hope for solar fuel
Research gives new ray of hope for solar fuel

Abstract:
The quest to develop the 'Holy Grail' of affordable, viable and environmentally-friendly fuels using sunlight has taken an exciting new twist.

Research gives new ray of hope for solar fuel

Exeter, UK | Posted on April 27th, 2018

A team of Renewable Energy experts from the University of Exeter has pioneered a new technique to produce hydrogen from sunlight to create a clean, cheap and widely-available fuel.

The team developed an innovative method to split water into its constituent parts - hydrogen and oxygen - using sunlight. The hydrogen can then be used as a fuel, with the potential to power everyday items such as homes and vehicles.

Crucially, hydrogen fuel that can be created through this synthetic photosynthesis method would not only severely reduce carbon emissions, but would also create a virtually limitless energy source.

The ground-breaking new research centres on the use of a revolutionary photo-electrode - an electrode that absorbs light before initializing electrochemical transformations to extract the hydrogen from water - made from nanoparticles of the elements lanthanum, iron and oxygen.

The researchers believe this new type of photo-electrode is not only cheap to produce, but can also be recreated on a larger scale for mass and worldwide use.

The research is published in leading journal, Scientific Reports.

Govinder Pawar, lead author on the paper and based at the University of Exeter's Environment and Sustainability Institute on the Penryn Campus in Cornwall said: "With growing economies and population, fossil fuels will not be able to sustain the global energy demand in a "clean" manner as they are being exhausted at an alarming rate.

"Alternative renewable fuels sources must be found which can sustain the global energy demand. Hydrogen is a promising alternative fuel source capable of replacing fossil fuels as it has a higher energy density than fossil fuels (more than double), zero carbon emissions and the only by-product is water."

At present, around 85 per cent of the global energy provisions come from the burning of fossil fuels. Therefore the need and desire to find a sustainable, cost-effective renewable fuel source is growing in urgency.

Perhaps unsurprisingly, the sun is earth's most abundant renewable energy source, with the potential to provide 100,000 terawatts of power each year - meaning one hour's worth of solar energy is equal to an entire year of total energy consumption worldwide.

However, efforts to produce efficient stable semiconductor material, in order to effectively convert sunlight to a storable widespread energy source, have so far proved elusive.

One of the most significant hindrances to the development of viable solar energy has been an inability to produce a semiconducting material suitable for the process.

In this new research, the team utilised lanthanum iron oxide to create a semiconducting material that gave the ideal results for the production of hydrogen from water using sunlight, making it the strongest candidate yet for renewable hydrogen generation.

Govinder Pawar added: "We have shown that our LaFeO3 photo-electrode has ideal band alignments needed to split water into its constituents (H2 and O2) spontaneously, without the need of an external bias. Moreover, our material has excellent stability where after 21 hours of testing it does not degrade, ideal for water splitting purpose. We are currently working on further improving our material to make it more efficient to produce more hydrogen."

Unbiased Spontaneous Solar fuel Production using Stable LaFeO3 Photoelectrode is published in Scientific Reports.

####

For more information, please click here

Contacts:
Duncan Sandes

44-013-927-22391

Copyright © University of Exeter

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Automotive/Transportation

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Home

Nanomaterials enable dual-mode heating and cooling device: Device could cut HVAC energy use by nearly 20% in the US December 2nd, 2020

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019

Iran Develops Water-Repellent Nano-Paint December 5th, 2018

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project