Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Glass matters: UCSB researchers find that the chemical topology of silica can influence the effectiveness of many chemical processes that use it

silica in test tube
silica in test tube

Abstract:
Better known as glass, silica is a versatile material used in myriad industrial processes, from catalysis and filtration, to chromatography and nanofabrication. Yet despite its ubiquity in labs and cleanrooms, surprisingly little is known about silica's surface interactions with water at a molecular level.

Glass matters: UCSB researchers find that the chemical topology of silica can influence the effectiveness of many chemical processes that use it

Santa Barbara, CA | Posted on March 14th, 2018

"The way water interacts with a surface affects many processes," said Songi Han, a UC Santa Barbara professor of chemistry and author on a recent paper in the Proceedings of the National Academy of Sciences. In many cases, she explained, scientists and engineers intuit the potential interactions between silica and water and design equipment, experiments and processes based on empirical evidence. But a mechanistic understanding of how the chemical topology of silica surfaces alter the structure of water at the surface could lead to a rationale design of these processes.

For many people, glass is glass, and brings to mind the clear, hard, smooth, homogenous-looking material that we use for windows or tableware. However, on a deeper level what we call "glass" is actually a more complex material that can contain different chemical properties with wide-ranging distributions.

"Glass is a material we're all familiar with, but what many people probably don't know is that it is what we would call a chemically heterogenous surface," said graduate student researcher Alex Schrader, lead author of the PNAS paper.

There are two different types of chemical groups that comprise glass surfaces, he said: silanol (SiOH) groups that are generally hydrophilic (water-loving), or siloxane (SiOHSi) groups that are typically water-repellant. "What we show," Shrader said, "is that the way that you arrange these two types of chemistries on the surface greatly impacts how water interacts with the surface, which, in turn, impacts physical observable phenomena, like how water spreads on a glass."

In certain processes such as catalysis, for instance, silica (aka silicon dioxide or SiO2) in the form of a whitish powder is used as a support -- the catalyst is attached to the powder grains, which in turn carry it into the process. While silica does not participate directly in the catalysis, the surface molecular composition of the silica grains can influence its effectiveness if the chemical group is predominantly hydrophilic or hydrophobic. The researchers found that if the silica tends to have hydrophilic silanol groups on its surface, it attracts water molecules, in effect forming a "soft barrier" of water molecules that reactants would have to overcome to somehow penetrate to proceed with the desired process or reaction.

"There are always dynamics and the water molecules must exchange their positions, and so that's why it's complicated," said UCSB chemical engineering professor Jacob Israelachvili, whose surface forces apparatus (SFA) measured interaction forces between silica surfaces across water. "You have to break some bond in order for this other bond to form. And that can take time."

It's not just the mere presence of the silanol groups that can affect water adhesion to silica surfaces. The researchers were puzzled by a nonlinear drop in surface water diffusivity -- as measured by the Overhauser dynamic nuclear polarization apparatus in the Han lab -- as the chemical composition of the silica surface moved from hydrophobic to hydrophilic. That mystery was subsequently solved by UCSB chemical engineering professor Scott Shell and his graduate student Jacob Monroe, whose computer simulations revealed the relative arrangement of silanol and siloxane groups on the surface also had an influence on water adhesion.

"If you have the same fraction of water-liking groups and water-disliking groups, by just rearranging them spatially, you can vary water mobility significantly," Han said.

Catalyst-driven processes are not the only thing that can be improved with a molecular understanding of silica-water adhesion. Filtration and chromatography may also be improved.

"It's also important in cleanroom procedures, nanofabrication and microprocessor formation," said Schrader, who pointed out that microprocessors are fabricated on silicon wafer substrates with a thin layer of glass, upon which circuits are laid. "It's important to understand how the actual surface of the silicon wafer looks on a chemical level and how these different metal layers that they deposit on it stick to it and how they appear."

####

For more information, please click here

Contacts:
Sonia Fernandez

805-893-4765

Copyright © University of California, Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Chemistry

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Nanofabrication

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Industrial

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project