Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantum memory with record-breaking capacity based on laser-cooled atoms

This is a cooled and trapped cloud of cold atoms used to realize the quantum memory protocol. The atoms reside in the center of the vacuum chamber, around which the magnetic coils necessary to trap the atoms are visible. The blue color is caused by two near-infrared lasers illuminating the atoms and driving a two-photon transition, which results in spontaneous emission of visible blue light. (Source: FUW, Mateusz Mazelanik)
CREDIT
Source: FUW, Mateusz Mazelanik
This is a cooled and trapped cloud of cold atoms used to realize the quantum memory protocol. The atoms reside in the center of the vacuum chamber, around which the magnetic coils necessary to trap the atoms are visible. The blue color is caused by two near-infrared lasers illuminating the atoms and driving a two-photon transition, which results in spontaneous emission of visible blue light. (Source: FUW, Mateusz Mazelanik) CREDIT Source: FUW, Mateusz Mazelanik

Abstract:
The emerging domain of parallelized quantum information processing opens up new possibilities for precise measurements, communication and imaging. Precise control of multiple stored photons allows efficient handling of this subtle information in large amounts. In the Quantum Memories Laboratory at Faculty of Physics, University of Warsaw a group of laser-cooled atoms has been used as a memory which can store simultaneously up to 665 quantum states of light. The experimental results have been published in a prestigious Nature Communications journal.

Quantum memory with record-breaking capacity based on laser-cooled atoms

Warsaw, Poland | Posted on December 15th, 2017

Every information processing task requires a memory. As any classical computer cannot exist without a RAM memory, quantum computer could not be built without a quantum memory. Quantum memory is a device capable of storage and on demand retrieval of quantum states. The key parameter of such memory is its capacity, in other words the number of qubits (quantum bits) which the memory can effectively process. Simultaneous operation on many qubits is a key to efficient quantum parallel computation, providing new possibilities in the fields on imaging or communication.

Regardless of significant efforts, the on demand generation of many photons remains a key challenge for many experimental groups dealing with quantum information. For a recently widely-used method of multiplexing many single-photon emitters into one network the complexity of experimental systems grows unfavorably with its advantages. Using a quantum memory on the other hand one can generate a group of a dozen photons within seconds rather than years. Among many methods of encoding information about single photons in a quantum memory the spatial multiplexing aided by a single-photon sensitive camera stands out as an effective way to obtain high capacity at low cost.

In the Quantum Memories Laboratory (Faculty of Physics, University of Warsaw) such high-capacity memory has been successfully built. The system now holds a world-record of the largest capacity, as other experimentalists can only harness tens of independent states of light. The heart of the constructed setup comprises a so-called magneto-optical trap (MOT): a group of rubidium atoms inside a glass vacuum chamber is trapped and cooled by lasers in the presence of magnetic field to about 20 microkelvins. The memory light-atoms interface is based on off-resonant light scattering. In the write-in process the cloud of atoms is illuminated by a laser beam, resulting in photon scattering. Each scattered photon is emitted in random direction and registered on a sensitive camera. The information about scattered photons is stored inside the atomic ensemble in the form of collective excitations - spin-waves which can be on demand retrieved as another group of photons. By measuring correlations between emission angles of photons created during the write-in and read-out process we certify that the memory is indeed quantum and that the properties of generated state of light fail to be described by classical optics. The prototype quantum memory from Faculty of Physics at University of Warsaw now takes two optical tables and functions with the help of nine lasers and three control computers.

The quantum memory created using the funding of National Science Center (Poland) "PRELUDIUM" and "OPUS" project as well as Ministry of Science and Higher Education "Diamentowy Grant" project stands out for one more reason. The quantum information about all stored photons resides in a single cloud of cold atoms, and each atom takes part in the storage of each photon, making the memory resilient to a decoherence. This has been confirmed by observing quantum interference of two distinct excitations (differing by just a single quantum number). "This will allow even more complex manipulations of the atomic state, finally to prepare quantum states of light with accurately controlled parameters" - explains prof. Wojciech Wasilewski, head of Quantum Memories Laboratory.

####

For more information, please click here

Contacts:
Michal Dabrowski

48-225-532-629

Copyright © Faculty of Physics University of Warsaw

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Videos/Movies

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Quantum Physics

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Memory Technology

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Quantum Computing

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project