Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Error-free into the quantum computer age

Error-free into the Quantum Computer Age.
CREDIT
H. Ritsch/IQOQI
Error-free into the Quantum Computer Age. CREDIT H. Ritsch/IQOQI

Abstract:
A study led by physicists at Swansea University in Wales, carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

Error-free into the quantum computer age

Swansea, UK | Posted on December 15th, 2017

In order to reach their full potential, today's quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means they need to consist of a considerably higher number of quantum bits. Second, they have to be capable of processing errors. "We still fail in running complex computations because environmental noise and errors cause the system to get out of control," says quantum physicist Rainer Blatt in Innsbruck. "By using quantum error correction, we can respond to this challenge better." Classical computers use similar schemes to detect and correct errors during data storage and transfer: Before data is stored and transferred, redundancy is added to the data usually in the form of additional bits detecting and correcting errors. Scientists have developed comparable schemes for quantum computers, where quantum information is encoded in several entangled physical quantum bits. "Here we exploit quantum mechanical properties for error detection and correction," explains Markus Müller from Swansea University, Wales. "If we can keep the noise below a certain threshold, we will be able to build quantum computers that can perform quantum computations of arbitrary complexity by increasing the number of entangled quantum bits accordingly."

Trapping ions in a maze

Markus Müller and his colleague Alejandro Bermudez Carballo explain that in order to achieve this goal, the capabilities of the technological platforms have to be optimally exploited. "For beneficial error correction we need quantum circuits that are stable and work reliably under realistic conditions even if additional errors occur during the error correction," explains Bermudez. They introduced new variants of fault-tolerant protocols and investigated how these can be implemented with currently available operations on quantum computers. The researchers found that a new generation of segmented ion traps offers ideal conditions for the process: Ions can be shuttled quickly across different segments of the trap array. Precisely timed processes allow parallel operations in different storage and processing regions. By using two different types of ions in a trap, scientists may use one type as carriers of the data qubits while the other one may be used for error measurement, noise suppression and cooling.

A new generation of quantum computers

Building on the experimental experience of research groups in Innsbruck, Mainz, Zurich und Sydney the researchers defined criteria that will allow the scientists to determine whether the quantum error correction is beneficial. By using this information they can guide the development of future ion-trap quantum computers with the goal to realize a logical quantum bit in the near future that, owed to error correction, exceeds the properties of a pure physical quantum bit.

Simon Benjamin's research group at the University of Oxford showed through complex numerical simulations of the new error correction protocols how the hardware of next generation ion-trap quantum computers has to be built to be able to process information fault-tolerantly. "Our numerical results clearly show that state-of-the-art ion-trap technologies are well suited to serve as platforms for constructing large-scale fault-tolerant quantum computers," explains Benjamin.

####

For more information, please click here

Contacts:
Mari Hooson

01-792-513-455

Copyright © Swansea University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication:

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Quantum communication

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project