Home > Press > DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots'
![]()  | 
| Johns Hopkins engineering faculty members, from left, David Gracias, Thao (Vicky) Nguyen and Rebecca Schulman, teamed up with their students and used DNA sequences to trigger significant shape-changing in a hydrogel sample. CREDIT Will Kirk/Johns Hopkins University | 
Abstract:
Biochemical engineers at the Johns Hopkins University have used sequences of DNA molecules to induce shape-changing in water-based gels, demonstrating a new tactic to produce "soft" robots and "smart" medical devices that do not rely on cumbersome wires, batteries or tethers.
The research advance, supervised by three faculty members in the university's Whiting School of Engineering, is detailed in the Sept. 15 issue of the journal Science.
The team members reported that their process used specific DNA sequences called "hairpins" to cause a centimeter-size hydrogel sample to swell to 100 times its original volume. The reaction was then halted by a different DNA sequence, dubbed a "terminator hairpin."
This approach could make it possible to weave moving parts into soft materials. The researchers have suggested that their process could someday play a role in creating smart materials, metamorphic devices, complex programmed actuators and autonomous robots with potential marine and medical applications.
To control how shape-shifting occurs in different parts of the target hydrogel, the researchers took a cue from the computer industry. They employed a photo-patterning technique similar to the one used to make tiny but intricate microchips. Various biochemical patterns embedded in different regions of the gel were designed to respond to specific DNA instructions to cause bending, folding or other responses.
"DNA sequences can be thought of as an analog to computer code," said David H. Gracias, a professor in the university's Department of Chemical and Biomolecular Engineering, and one of two senior authors of the Science article. "Just as computer software can direct specific tasks, DNA sequences can cause a material to bend or expand in a certain way at a specific site."
He added that this is not an unusual occurrence in nature. "Shape changing is very important in biology," Gracias said. "Think about how a caterpillar turns into butterfly."
The study's other senior author, Rebecca Schulman, is an assistant professor in the same department. Her research group designs intelligent materials and devices using techniques from DNA nanotechnology. "We've been fascinated by how living cells can use chemical signals to decide how to grow or move and use chemical energy to power themselves," she said. "We wanted to build machines that could act in a similar way. Our fabrication technology makes it possible to design very complicated devices in a range of sizes."
Thao (Vicky) Nguyen, a Johns Hopkins expert in the mechanics of polymers and biomaterials, provided key contributions to the research and was a co-author of the paper. "Using computer simulations, we developed a design rule to transform the large swelling of the hydrogel into the desired shape-change response," she said. Nguyen is an associate professor and the Marlin U. Zimmerman Jr. Faculty Scholar in the Department of Mechanical Engineering."
To confirm their ability to control which hydrogel targets were activated, the team members used DNA sequence-responsive flower-shaped hydrogels. In each "flower," two sets of petals were fabricated, and each set was designed to respond only to one of two different DNA sequences. When exposed to both sequences, all of the petals folded in response. But when they were exposed to just one of the sequences, only the petals matched to that sequence folded.
The team also fabricated hydrogel crab-shaped devices in which the antennae, claws and legs each curled up in in response to their matching DNA sequence. The crab devices remained in their actuated state for at least 60 days. The crab shape was selected in honor of the popular seafood served in the university's home state of Maryland.
The new technology detailed in the Science paper is protected by a provisional patent obtained through the university's Johns Hopkins Tech Ventures office.
###
The lead authors of the paper were doctoral students Angelo Cangialosi and ChangKyu Yoon. The co-authors included graduate students Jiayu Liu, Qi Huang and Jingkai Guo. Funding for the project came from US Army Research Office award W911NF-15-1-0490 and US Department of Energy award 221874.
####
For more information, please click here
Contacts:
Phil Sneiderman
443-997-9907
Copyright © Johns Hopkins University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links | 
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Videos/Movies
    ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Hydrogels
    Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Robotics
    Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
    Femtosecond laser technique births "dancing microrobots": USTC's breakthrough in multi-material microfabrication August 11th, 2023
Govt.-Legislation/Regulation/Funding/Policy
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Possible Futures
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Military
    Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
    Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
    Single atoms show their true color July 5th, 2024
    NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Nanobiotechnology
    New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
    Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||