Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticles pollution rises 30 percent when flex-fuel cars switch from bio to fossil: Study carried out in São Paulo, home to the world's largest flex fuel urban fleet, shows increase of ultrafine particulate matter when ethanol prices rose and consumption fell

Levels of ultrafine particulate matter in São Paulo City, Brazil, increased by up to 30% at times when ethanol prices rose and consumption fell (photo: Léo Ramos Chaves / Pesquisa FAPESP magazine)
Levels of ultrafine particulate matter in São Paulo City, Brazil, increased by up to 30% at times when ethanol prices rose and consumption fell (photo: Léo Ramos Chaves / Pesquisa FAPESP magazine)

Abstract:
When ethanol prices at the pump rise for whatever reason, it becomes economically advantageous for drivers of dual-fuel vehicles to fill up with gasoline. However, the health of the entire population pays a high price: substitution of gasoline for ethanol leads to a 30% increase in the atmospheric concentration of ultrafine particulate matter, which consists of particles with a diameter of less than 50 nanometers (nm).

Nanoparticles pollution rises 30 percent when flex-fuel cars switch from bio to fossil: Study carried out in São Paulo, home to the world's largest flex fuel urban fleet, shows increase of ultrafine particulate matter when ethanol prices rose and consumption fell

São Paulo City, Brazil | Posted on August 28th, 2017

The phenomenon was detected in São Paulo City, Brazil, in a study supported by the São Paulo Reserch Foundation (FAPESP) and published in Nature Communications.

"These polluting nanoparticles are so tiny that they behave like gas molecules. When inhaled, they can penetrate the respiratory system's defensive barriers and reach the pulmonary alveoli, so that potentially toxic substances enter the bloodstream and may increase the incidence of respiratory and cardiovascular problems," said Paulo Artaxo, Full Professor at the University of São Paulo's Physics Institute (IF-USP) and a co-author of the study.

According to him, between 75% and 80% of the mass of nanoparticles measured in this study corresponds to organic compounds (carbon in different forms) emitted by motor vehicles.

Levels of ultrafine particulate matter in the atmosphere are neither monitored nor regulated by environmental agencies not only in Brazil but practically anywhere in the world, Artaxo stressed.

"What these compounds are exactly and how they affect health are questions that require further research". The São Paulo State Environmental Corporation (CETESB), for example, routinely monitors only solid particles with diameters of 10,000 nm (PM10) and 2,500 nm (PM2.5) - as well as other gaseous pollutants such as ozone (O3), carbon monoxide (CO) and nitrogen dioxide (NO2).

Nonetheless, he explained that a consensus is forming in the United States and Europe based on recent research indicating that these emissions are a potential health hazard and should be regulated. Several US states, such as California, have laws requiring a 20%-30% ethanol blend in gasoline, which also helps reduce emissions of ultrafine particulate matter.

Data collection was performed from January to May 2011, and the analyses took place before, during and after a sharp fluctuation in ethanol prices - owing to macroeconomic factors such as the international price of sugar (Brazilian ethanol is made from sugarcane) - leading consumers to switch motor fuels in São Paulo City.

While no significant changes were detected in levels of inhalable fine particulate matter (PM2.5 and PM10), the study proved in a real, day-to-day situation that choosing ethanol reduces emissions of ultrafine particles. To date, this phenomenon had only been observed in the laboratory.

"These results reinforce the need for public policies to encourage the use of biofuels, as they clearly show that the public loses in health what they save at the pump when opting for gasoline," Artaxo said.

According to Artaxo, the research included innovative approaches so that the study could focus on "older" aerosols that had already interacted with other substances present in the atmosphere. Thus, collection was performed in a site relatively distant from main traffic thoroughfares - the top of a ten-story building belonging to IF-USP in the western part of São Paulo "The pollution we inhale every day at home or at work isn't what comes out of vehicular exhaust pipes but particles already processed in the atmosphere" he explained.

Also, data analysis was performed through the adaptation of a model developed by Brazilian economist Alberto Salvo, first author of the article, that meticulously integrates a large number of variables.

"We adapted a sophisticated statistical model originally developed for economic analysis and used here for the first time to analyze the chemistry of atmospheric nanoparticles," Artaxo said. "The main strength of this tool is that it enables us to work with all these variables, such as the presence or absence of rainfall, wind direction, traffic intensity, and levels of ozone, carbon monoxide, and other pollutants."

Perspectives on low carbon emissions

In São Paulo, a city with 7 million motor vehicles and the largest urban fleet of flexible-fuel cars, it would be feasible to run all buses on biofuel. "We have the technology for this in Brazil - and at a competitive price," he said.

The fact that the city's bus fleet still depends on diesel, Artaxo warned, creates an even worse health hazard in the shape of emissions of black carbon, one of the main components of soot and a pollutant that contributes to global warming. Alongside electricity generation, the transportation sector is the largest emitter of pollutants produced by the burning of fossil fuels.

For Artaxo, incentives for electric, hybrid or biofuel vehicles are vital to reducing greenhouse gas emissions. "By incentivizing biofuels, we could solve several problems at once," he said. "We could combat climate change, reduce harm to health and foster advances in automotive technology by offering a stimulus for auto makers to develop more economical and efficient cars fueled by ethanol."

###

The study was conducted during Joel Ferreira de Brito's postdoctoral research, which Artaxo supervised. Franz Geiger, a chemist at Northwestern University in the US, also collaborated. Alberto Salvo is a professor at the National University of Singapore.

####

About FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO
The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known by the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. For more information: http://www.fapesp.br/en .

For more information, please click here

Contacts:
Heitor Shimizu

55-113-838-4223

Copyright © FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Environment

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

New gel could boost coral reef restoration: The substance, applied to surfaces as a coating, improved coral larvae settlement by up to 20 times in experiments compared to untreated surfaces May 16th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Automotive/Transportation

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project