Home > Press > DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity
![]() |
| A Danish-American research team has now found another piece of the puzzle for the development of personalized medicine with the results of a highly sensitive monitoring of cancer-related topoisomerase II enzymes. |
Abstract:
The development of DNA sensor systems is of great importance for advances in medical science. Now another piece of the puzzle for the development of personalized medicine has been found with the results of a highly sensitive monitoring of cancer-related topoisomerase II enzymes.
Sensors and sensor systems made of DNA have gained increasing interest over the past several years. This is due in part to the recent advances in chemical synthesis of modified DNA oligonucleotides and to the ease by which DNA sensor systems can be combined with various DNA nanomaterials.
Hence, various DNA sensors or sensor systems for the detection of small molecules, proteins, or even enzyme activities, based on optical or electrochemical readout, have been reported. Some of these have been successfully integrated with more complex nano-structures. Many of the sensors or sensor systems are built as relatively simple structures, exemplified by single- or double-stranded DNA structures. These advances provide completely new opportunities for research.
By the use of the DNA sensor system, researchers from Denmark and USA have demonstrated the assembly and utilization of a surface-attached double-stranded DNA catenane composed of two intact interlinked DNA nano-circles for specific and sensitive measurements of the life essential topoisomerase II (Topo II) enzyme activity.
Human Topo II is of great importance in anti-cancer therapy and is the primary target of a large number of clinically used chemotherapeutics such as the drug etoposide. Unfortunately, a frequent side effect of treatment with these drugs is the development of resistance or secondary cancers.
The available evidence suggests a potential correlation between Topo II expression and drug response, at least in some cancers. Sensor systems for measuring Topo II activity directly in human cancers may be of great value for elucidating a potential correlation between Topo II activity and chemo-response.
The researchers succeeded in obtaining quantitative detection of purified Topo II as well as Topo II in human cell extracts consisting of approximately five to 5000 cells. By combining two DNA sensor systems, the Danish-American research team was able to achieve synchronous detection of both Topo II and Topo I, the latter being an important target for cancer treatment.
As the Topo II activity is considered to be a predictive marker in cancer therapy, the described highly sensitive monitoring of Topo II activities can be an important piece of the puzzle for the development of personalized medicine and individualized treatment, where decisions are often based on sparse samples.
####
For more information, please click here
Contacts:
Emil L. Kristoffersen, Ph.D.
45-29-27-13-06
Associate Professor Birgitta R. Knudsen
Department of Molecular Biology and Genetics/iNANO
Aarhus University
Denmark
Copyright © Aarhus University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links |
The article has been published in the international journal Nucleic Acids Research (NAR):
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Cancer
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Possible Futures
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Sensors
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Nanobiotechnology
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||