Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity

A Danish-American research team has now found another piece of the puzzle for the development of personalized medicine with the results of a highly sensitive monitoring of cancer-related topoisomerase II enzymes.
A Danish-American research team has now found another piece of the puzzle for the development of personalized medicine with the results of a highly sensitive monitoring of cancer-related topoisomerase II enzymes.

Abstract:
The development of DNA sensor systems is of great importance for advances in medical science. Now another piece of the puzzle for the development of personalized medicine has been found with the results of a highly sensitive monitoring of cancer-related topoisomerase II enzymes.

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity

Aarhus, Denmark | Posted on August 23rd, 2017

Sensors and sensor systems made of DNA have gained increasing interest over the past several years. This is due in part to the recent advances in chemical synthesis of modified DNA oligonucleotides and to the ease by which DNA sensor systems can be combined with various DNA nanomaterials.

Hence, various DNA sensors or sensor systems for the detection of small molecules, proteins, or even enzyme activities, based on optical or electrochemical readout, have been reported. Some of these have been successfully integrated with more complex nano-structures. Many of the sensors or sensor systems are built as relatively simple structures, exemplified by single- or double-stranded DNA structures. These advances provide completely new opportunities for research.

By the use of the DNA sensor system, researchers from Denmark and USA have demonstrated the assembly and utilization of a surface-attached double-stranded DNA catenane composed of two intact interlinked DNA nano-circles for specific and sensitive measurements of the life essential topoisomerase II (Topo II) enzyme activity.

Human Topo II is of great importance in anti-cancer therapy and is the primary target of a large number of clinically used chemotherapeutics such as the drug etoposide. Unfortunately, a frequent side effect of treatment with these drugs is the development of resistance or secondary cancers.

The available evidence suggests a potential correlation between Topo II expression and drug response, at least in some cancers. Sensor systems for measuring Topo II activity directly in human cancers may be of great value for elucidating a potential correlation between Topo II activity and chemo-response.

The researchers succeeded in obtaining quantitative detection of purified Topo II as well as Topo II in human cell extracts consisting of approximately five to 5000 cells. By combining two DNA sensor systems, the Danish-American research team was able to achieve synchronous detection of both Topo II and Topo I, the latter being an important target for cancer treatment.

As the Topo II activity is considered to be a predictive marker in cancer therapy, the described highly sensitive monitoring of Topo II activities can be an important piece of the puzzle for the development of personalized medicine and individualized treatment, where decisions are often based on sparse samples.

####

For more information, please click here

Contacts:
Emil L. Kristoffersen, Ph.D.

45-29-27-13-06

Associate Professor Birgitta R. Knudsen
Department of Molecular Biology and Genetics/iNANO
Aarhus University
Denmark

Copyright © Aarhus University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article has been published in the international journal Nucleic Acids Research (NAR):

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Cancer

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Sensors

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Nanobiotechnology

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project