Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanocrystalline LEDs: Red, green, yellow, blue ...

Foto: Foto Ruhrgebiet / fotolia.com
Foto: Foto Ruhrgebiet / fotolia.com

Abstract:
The color of the light emitted by an LED can be tuned by altering the size of their semiconductor crystals. Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have now found a clever and economical way of doing just that, which lends itself to industrial-scale production.

Nanocrystalline LEDs: Red, green, yellow, blue ...

Munich, Germany | Posted on August 7th, 2017

Unlike our old friend the incandescent lightbulb, light-emitting diodes (or LEDs) produce light of a defined color within the spectral range from the infrared to the ultraviolet. The exact wavelength of the emission is determined by the chemical composition of the semiconductor employed, which is the crucial component of these devices. In the case of some semi-conducting materials, the color can also be tuned by appropriately modifying the size of the crystals of which the light-emitting layer is composed. In crystals with dimensions on the order of a few nanometers, quantum mechanical effects begin to make themselves felt.

LMU researchers in collaboration with colleagues at the University of Linz (Austria) have now developed a method for the production of semi-conducting nanocrystals of defined size based on the cheap mineral oxide known as perovskite. These crystals are extremely stable, which ensures that the LEDs exhibit high color fidelity -- an important criterion of quality. Moreover, the resulting semiconductors can be printed on suitable surfaces, and are thus predestined for the manufacture of LEDs for use in displays.

The crucial element in the new method is a thin wafer, only a few nanometers thick, which is patterned like a waffle. The depressions serve as tiny reaction vessels, whose shape and volume ultimately determine the final size of the nanocrystals. "Optimal measurements of the size of the crystals were obtained using a fine beam of high-energy X-radiation at the Deutsche Elektronen-Synchrotron (DESY) in Hamburg", says LMU researcher Dr. Bert Nickel, member of the Nanosystems Initiative Munich (NIM), a Cluster of Excellence.

Moreover, the wafers are produced by means of an economical electrochemical process, and can be fashioned directly into LEDs. "Our nanostructure oxide layers also prevent contact between the semiconductor crystals and deleterious environmental factors such as free oxygen and water, which would otherwise limit the working lifetime of the LEDs," as Dr. Martin Kaltenbrunner of the Johannes Kepler University in Linz explains. In the next step, we want to enhance the efficiency of these diodes further, and explore their potential for use in other applications, such as flexible displays.

####

For more information, please click here

Contacts:
Luise Dirscherl

0049-892-180-3423

Copyright © Ludwig-Maximilians-Universität München (LMU)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Science Advances online 2017:

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Quantum Physics

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Flexible Electronics

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Industrial

Quantum interference in molecule-surface collisions February 28th, 2025

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Quantum nanoscience

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project