Home > Press > First Capacitive Transducer with 13nm Gap
Abstract:
Fabrication of sub-30nm gap for capacitive transducers seemed impossible, until recently. Researchers at UC Berkeley successfully demonstrated a 13nm-gap capacitive resonator, which will improve sensor and resonator performance by orders of magnitude.
Capacitive-gap transduced resonators are well known to provide high on-chip quality factors (Q), with values reaching 150,000 at VHF and 40,000 at 3GHz. Q’s this high enable 0.1% bandwidth channel-select filters with low insertion loss and high rejection for ultra-low power transceivers. At HF (from 3-30MHz), capacitive-gap transduced resonators also post strong electromechanical coupling, as gauged by (Cx/Co), up to 30%, which outperforms all other technologies. However, application of these transducers as the main filters of the smartphone (with market value more than $10b) requires strong electromechanical coupling at gigahertz frequencies. To achieve such a high coupling, transducers need to have gap spacing as small as 20 nanometers or less.
Researchers at University of California Berkeley demonstrated electrode-to-resonator gaps as small as 13.2nm achieved on a 59.5-MHz capacitive-gap transduced disk resonator which enabled a measured electromechanical coupling strength Cx/Co greater than 1.62% at a bias voltage of only 5.5V, which exceeds that of any competing technology, macro or micro, capacitive or piezoelectric, at similar VHF frequencies, all while retaining an unloaded quality factor Q of 29,640. Several key discoveries contribute to this successful demonstration, which include a novel polysilicon etch recipe that enables considerably smoother etch sidewalls than previously achievable, allowing more uniform sidewall sacrificial layer deposition and preventing structure pull-in by removing disparities and their associated strong electric fields. The implementation of small gap has improved the electromechanical coupling by more than 10x compared to previous resonators and its figure-of-merit measured as kt
2Q=576.2 holds the world’s record. This combination of high Cx/Co and Q, which has long been a primary driver for RF MEMS research, stands to not only cut VHF low noise oscillator power consumption to sub-µW levels, but now creates opportunities to apply MEMS resonator technology to the highly profitable and lucrative RF filter market for smartphones.
####
For more information, please click here
Contacts:
Jalal Naghsh Nilchi
Phone: 510-918-4346
Fax:
E-mail:
Copyright © University of California Berkeley
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Hardware
The present and future of computing get a boost from new research July 21st, 2023
A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020
Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020
MEMS
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||