Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Liquid electrolyte contacts for advanced characterization of resistive switching memories

(left) schematic of the ionic liquid experiment. (center and right) topographic and current maps obtained with the CAFM after the ionic liquid stress. The CAFM is able to detec a single conductive spot within a circular area with a diameter of 20 micrometers
CREDIT
Experimental
(left) schematic of the ionic liquid experiment. (center and right) topographic and current maps obtained with the CAFM after the ionic liquid stress. The CAFM is able to detec a single conductive spot within a circular area with a diameter of 20 micrometers CREDIT Experimental

Abstract:
Memristors are nanosized electronic devices that can be used to fabricate next generation memories, and to build up electronic synapses for neuromorphic computing. A memristor consists on a metal-insulator-metal nanocell, in which electrical impulses are applied between the electrodes to modulate the resistivity of the insulator. In this way, a high and a low resistivity state can be intentionally and cyclically induced, which can be used to simulate the ones and zeros of the binary code. The resistivity changes are generated due to local atomic rearrangements produced by the electrical field applied, but understanding this phenomenon is very challenging because i) it takes place in very small areas, and ii) it happens at the insulating stack, which is buried in the top electrode.

Liquid electrolyte contacts for advanced characterization of resistive switching memories

Suzhou, China | Posted on July 26th, 2017

The group lead by Prof. Paul C. McIntyre at Stanford University has recently developed a new methodology to observe in situ these local conductivity changes. The method consists on replacing the top electrode by a conductive liquid electrolyte, which can be polarized to stress the insulator. After the stress, the electrolyte can be rinsed and the surface of the insulator is scanned via conductive atomic force microscopy. The nanoscale studies have been carried by Prof. Mario Lanza's group, and reveal the formation of local spots with diameters below 4 nm that are responsible for the conductivity change. By tuning the conductivity of the liquid electrolyte, this method even allows distinguishing the contribution of electrical field and thermal heat into the currents generated.

###

This work was recently presented in the first China RRAM International Workshop (see http://www.chinarram.org ), which was held at Soochow University on June 12th-14th of 2017. This event, hosted by Prof. Mario Lanza, aggregated most world leaders in the field of memristors, including Prof. Philip Wong (Stanford University), Prof. Wei Lu (Michigan University) and Prof. Tony Kenyon (University College London), among many others. The workshop is expected to hold its second edition in 2019 and become a biannual meeting for the memristors community.

####

For more information, please click here

Contacts:
Joan Sintes

34-671-502-025

Copyright © Lanzalab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Memory Technology

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project