Home > Press > Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques
![]() |
Fig. 1. Optical nanoantenna. CREDIT Researchers from MIPT and ITMO University |
Abstract:
In order to send, receive, and process electromagnetic signals, antennas are used. An antenna is a device capable of effectively transmitting, picking up, and redirecting electromagnetic radiation. Typically, one thinks of antennas as macroscopic devices operating in the radio and microwave range. However, there are similar optical devices (Fig. 1). The wavelengths of visible light amount to several hundred nanometers. As a consequence, optical antennas are, by necessity, nanosized devices. Optical nanoantennas, which can focus, direct, and effectively transmit light, have a wide range of applications, including information transmission over optical channels, photodetection, microscopy, biomedical technology, and even speeding up chemical reactions.
For an antenna to pick up and transmit signals efficiently, its elements need to be resonant. In the radio band, such elements are pieces of wire. In the optical range, silver and gold nanoparticles with plasmonic resonances (Fig. 2a) have long been used for this purpose. Electromagnetic fields in such particles can be localized on a scale of 10 nanometers or less, but most of the energy of the field is wasted due to Joule heating of the conducting metal. There is an alternative to plasmonic nanoparticles, which has been studied extensively for the last five years, namely particles of dielectric materials with high refractive indices at visible light frequencies, such as silicon. When the size of the dielectric particle and the wavelength of light are just right, the particle supports optical resonances of a particular kind, called Mie resonances (Fig. 2b). Because the material properties of dielectrics are different from those of metals, it is possible to significantly reduce resistive heating by replacing plasmonic nanoantennas with dielectric analogs.
The key characteristic of a material determining Mie resonance parameters is the refractive index. Particles made of materials with high refractive indices have resonances characterized by high quality factors. This means that in these materials electromagnetic oscillations last longer without external excitation. In addition, higher refractive indices correspond to smaller particle diameters, allowing for more miniature optical devices. These factors make high-index materials -- i.e., those with high indices of refraction -- more suitable for the implementation of dielectric nanoantennas.
In their paper published in Optica, the researchers systematically examine the available high-index materials in terms of their resonances in the visible and infrared spectral ranges. Materials of this kind include semiconductors and polar crystals, such as silicon carbide. To illustrate the behavior of various materials, the authors present their associated quality factors, which indicate how quickly oscillations excited by incident light die out. Theoretical analysis enabled the researchers to identify crystalline silicon as the best currently available material for the realization of dielectric antennas operating in the visible range, with germanium outperforming other materials in the infrared band. In the mid-infrared part of the spectrum, which is of particular interest due to possible applications, such as radiative cooling, i.e., the cooling of a heated body by means of radiating heat in the form of electromagnetic waves into the environment; and thermal camouflage -- reducing thermal radiation given off by an object, thus making it invisible to infrared cameras, the compound of germanium and tellurium took the pedestal, Fig. 3.
There are fundamental limitations on the value of the quality factor. It turns out that high refractive indices in semiconductors are associated with interband transitions of electrons, which inevitably entail the absorption of energy carried by the incident light. This absorption in turn leads to a reduction of the quality factor, as well as heating, and that is precisely what the researchers are trying to get rid of. There is, therefore, a delicate balance between a high index of refraction and energy losses.
"This study is special both because it offers the most complete picture of high-index materials, showing which of them is optimal for fabricating a nanoantenna operating in this spectral range, and because it provides an analysis of the manufacturing processes involved," notes Dmitry Zuev, research scientist at the Metamaterials laboratory of the Faculty of Physics and Engineering, ITMO University. "This enables a researcher to select a material, as well as the desired manufacturing technique, taking into account the requirements imposed by their specific situation. This is a powerful tool furthering the design and experimental realization of a wide range of dielectric nanophotonic devices."
According to the overview of manufacturing techniques, silicon, germanium, and gallium arsenide are the most thoroughly studied high-index dielectrics used in nanophotonics. A wide range of methods are available for manufacturing resonant nanoantennas based on these materials, including lithographic, chemical, and laser-assisted methods. However, in the case of some materials, no technology for fabrication of resonant nanoparticles has been developed. For example, researchers have yet to come up with ways of making nanoantennas from germanium telluride, whose properties in the mid-infrared range were deemed the most attractive by the theoretical analysis.
"Silicon is currently, beyond any doubt, the most widely used material in dielectric nanoantenna manufacturing," says Denis Baranov, a PhD student at MIPT. "It is affordable, and silicon-based fabrication techniques are well established. Also, and this is important, it is compatible with the CMOS technology, an industry standard in semiconductor engineering. But silicon is not the only option. Other materials with even higher refractive indices in the optical range might exist. If they are discovered, this would mean great news for dielectric nanophotonics."
The research findings obtained by the team could be used by nanophotonics engineers to develop new resonant nanoantennas based on high-index dielectric materials. Besides, the paper suggests further theoretical and experimental work devoted to the search for other high-index materials with superior properties to be used in new improved dielectric nanoantennas. Such materials could, among other things, be used to considerably boost the efficiency of radiative cooling of solar cells, which would constitute an important technological advance.
####
For more information, please click here
Contacts:
Asya Shepunova
7-916-813-0267
Copyright © Moscow Institute of Physics and Technology
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Imaging
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Chemistry
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Wireless/telecommunications/RF/Antennas/Microwaves
HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Optical computing/Photonic computing
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Programmable electron-induced color router array May 14th, 2025
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Tools
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Photonics/Optics/Lasers
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |