Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U.

Caption: Ben-Gurion University of the Negev researchers demonstrate a light-generated bubble for microparticle propulsion. Panel (a) shows the 42?μm diameter spherical particle and the 405?nm laser beam as the respective dark and bright patches. Panel (b) shows that 40 milliseconds later the microsphere has traversed a distance roughly 10 times its size.
CREDIT
Ben-Gurion U.
Caption: Ben-Gurion University of the Negev researchers demonstrate a light-generated bubble for microparticle propulsion. Panel (a) shows the 42?μm diameter spherical particle and the 405?nm laser beam as the respective dark and bright patches. Panel (b) shows that 40 milliseconds later the microsphere has traversed a distance roughly 10 times its size. CREDIT Ben-Gurion U.

Abstract:
An innovative technique using light and tiny bubbles to propel microparticles at forces many times greater than previously achieved has been developed by Ben-Gurion University of the Negev researchers.

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U.

Beer-Sheva, Israel | Posted on June 21st, 2017

The new technique could have significant implications in the development of micromotors and optical devices for use in solar cell optics. "What we ultimately hope to achieve is a highly accurate, passive technology for use in a concentrated solar device that would follow the sun without the need for a mechanical tracking mechanism," says Dr. Avi Niv, study co-author.

According to the findings published recently in Nature Scientific Reports, the researchers converted the energy created from light into kinetic motion using nano-sized, laser-generated bubbles. As the bubble expands it acts as a propulsion mechanism for surrounding microparticles. Mechanical manipulation of micro- and nano-scaled objects is important in biology, surface science and microfluidics, and for micromachines in general.

View a video of the experiment. https://www.youtube.com/watch?v=fL9CUoSkYeU

Dr. Niv says, "In our study, a micron-sized object was propelled at unprecedented speeds of close to one meter-per-second, six times faster than what is common in present devices, while still maintaining motion direction control." Dr. Niv and co-author Ido Frenkel, a Ph.D. student, are part of BGU's Alexandre Yersin Department of Solar Energy and Environmental Physics at the Jacob Blaustein Institutes for Desert Research.

"After the bubble initiates movement and bursts, there is no trace of the vapor; the system returns to the original state and the same action can be initiated repeatedly, like a combustion engine."

###

This research was supported by the I-Core Program of the Planning and Budgeting Committee and the Israel Science Foundation, The Ministry of Economy and Industry of Infrastructure Energy and Water, as well as the Adelis Foundation.

####

About American Associates, Ben-Gurion University of the Negev
American Associates, Ben-Gurion University of the Negev (AABGU) plays a vital role in sustaining David Ben-Gurion's vision: creating a world-class institution of education and research in the Israeli desert, nurturing the Negev community and sharing the University's expertise locally and around the globe. As Ben-Gurion University of the Negev (BGU) looks ahead to turning 50 in 2020, AABGU imagines a future that goes beyond the walls of academia. It is a future where BGU invents a new world and inspires a vision for a stronger Israel and its next generation of leaders. Together with supporters, AABGU will help the University foster excellence in teaching, research and outreach to the communities of the Negev for the next 50 years and beyond. Visit vision.aabgu.org to learn more.

AABGU, headquartered in Manhattan, has nine regional offices throughout the United States.

For more information, please click here

Contacts:
Andrew Lavin

516-944-4486

Copyright © American Associates, Ben-Gurion University of the Negev

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project