Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels

Under the influence of a magnet, nanoparticles realign actin filaments in endothelial cells. Rice University researchers suspect such realignment can disrupt the junctions between endothelial cells and increase vascular permeability. (Credit: Laboratory of Biomolecular Engineering and Nanomedicine/Rice University)
Under the influence of a magnet, nanoparticles realign actin filaments in endothelial cells. Rice University researchers suspect such realignment can disrupt the junctions between endothelial cells and increase vascular permeability. (Credit: Laboratory of Biomolecular Engineering and Nanomedicine/Rice University)

Abstract:
The endothelial cells that line blood vessels are packed tightly to keep blood inside and flowing, but scientists at Rice University and their colleagues have discovered it may be possible to selectively open gaps in those barriers just enough to let large molecules through -- and then close them again.

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels

Houston, TX | Posted on June 8th, 2017

Rice bioengineer Gang Bao and collaborators at Emory University and the Georgia Institute of Technology reported using magnets to help iron-oxide nanoparticles invade endothelial cells both in the lab and in vivo. Then they use the same magnets to make vessels temporarily "leaky."

This permeability would allow large-molecule drugs to reach target tissues, Bao said. Strong magnets may be able to lead nanoparticle-infused stem cells or drug-laden nanoparticles themselves to targeted areas, even in deep tissues like organs that current therapies cannot reach, he said.

The study appears today in Nature Communications.

"For many diseases, systemic delivery through the blood stream is the only way to deliver molecules to the site," Bao said. "Small molecules can penetrate the blood vessel and get into the diseased cells, but large molecules like proteins or drug-loaded nanoparticles cannot pass the endothelium effectively unless it is leaky."

Blood vessels in cancerous tumors typically have holes in the endothelial barrier, but they don't close on demand like Bao and his team hope to make them do.

Along with drug molecules, Bao wants to use magnets to deliver nanoparticle-infused stem cells to injured tissues. "Unless you can do direct injection of stem cells, let's say into the heart, you have to do systemic delivery and you have no control over where they go.

"Our initial idea was to deliver magnetic nanoparticles into stem cells and then use a magnet to attract the stem cells to a particular location," he said. "In doing so, we also discovered that by applying a magnetic field, we could generate changes in the cell's skeletal structure in terms of the actin filament structures."

These structural elements give cells their shape and help keep neighboring endothelial cells tightly compacted. "We thought if we could alter the cell-cell junction by using magnetic force, there was a possibility that we could engineer the leakiness of the vessel," Bao said.

The lab created a microfluidic flow chamber that mimicked the vascular system and lined its tubes with real endothelial cells. Experiments proved their hypothesis: When a magnetic field was applied to the nanoparticle-infused cells, the gaps opened. Relaxing the force allowed most gaps to close after 12 hours.

Microscopic images showed that fluorescent-tagged nanoparticles were evenly distributed inside the endothelial channel when a magnetic field was not applied. When it was, the particles redistributed, and the force they applied distorted the cytoskeleton.

In some images, actin filaments that help give a cell its shape were observed lining up with the force. "It's a pretty dramatic change," Bao said. "Once you apply the force, given enough time, the structure of the cells changes. That leads to the opening of the cell-cell junction."

Bao said the magnetic force also generates a biological signal that alters the cytoskeletal structure. "It also contributes to the leakiness," he said. "We're still trying to understand what kind of signal we give to cells and how the individual cells are responding."

While there are methods to facilitate two types of transport across the endothelial barrier – paracellular (between cells) and transcellular (through cells) – neither has the ability to target specific areas of the body. Bao said his team's approach offers a solution.

He said his group is part of an ongoing collaborative project on knee repair with the lab of Dr. Johnny Huard, a professor of orthopedic surgery at the University of Texas Health Science Center at Houston. "The problem is how to accumulate therapeutic stem cells around the knee and keep them there," Bao said. "After injecting the nanoparticle-infused cells, we want to put an array of magnets around the knee to attract them.

"But if you want to treat the heart or liver, you'd need a pretty large device to have the required magnetic field," he said. "We don't have that yet. To drive this to a clinical setting will be a challenge."

Sheng Tong, an associate research professor at Rice, and Yongzhi Qiu, a research associate at Emory University and Georgia Tech, are lead authors of the study. Co-authors are postdoctoral researcher Linlin Zhang and research technician Lin Hong of Rice; researcher Yumiko Sakurai and postdoctoral fellow David Myers of Emory and Georgia Tech; and Wilbur Lam, an assistant professor of hematology and oncology at Emory and of biomedical engineering at Georgia Tech.

The National Heart, Lung and Blood Institute, the National Institutes of Health and the Cancer Prevention and Research Institute of Texas supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/RiceUniversityoverview.

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Laboratory of Biomolecular Engineering and Nanomedicine (Bao Group):

Lam Lab:

Rice Department of Bioengineering:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cancer

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Magnetism/Magnons

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project