Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Electrocatalyst nanostructures key to improved fuel cells, electrolyzers

Abstract:
Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion
Zhenhua Zeng1, Kee-Chul Chang2, Joseph Kubal1, Nenad M. Markovic2 and Jeffrey Greeley1
1 School of Chemical Engineering, Purdue University, West Lafayette, Indiana
2 Materials Science Division, Argonne National Laboratory, Argonne, Illinois
Design of cost-effective electrocatalysts with enhanced stability and activity is of paramount importance for the next generation of energy conversion systems, including fuel cells and electrolysers. However, electrocatalytic materials generally improve one of these properties at the expense of the other. Here, using density functional theory calculations and electrochemical surface science measurements, we explore atomic-level features of ultrathin (hydroxy)oxide films on transition metal substrates and demonstrate that these films exhibit both excellent stability and activity for electrocatalytic applications. The films adopt structures with stabilities that significantly exceed bulk Pourbaix limits, including stoichiometries not found in bulk and properties that are tunable by controlling voltage, film composition, and substrate identity. Using nickel (hydroxy)oxide/Pt(111) as an example, we further show how the films enhance activity for hydrogen evolution through a bifunctional effect. The results suggest design principles for this class of electrocatalysts with simultaneously enhanced stability and activity for energy conversion.

Electrocatalyst nanostructures key to improved fuel cells, electrolyzers

West Lafayette, IN | Posted on June 5th, 2017

Purdue University scientists' simulations have unraveled the mystery of a new electrocatalyst that may solve a significant problem associated with fuel cells and electrolyzers.

Fuel cells, which use chemical reactions to produce energy, and electrolyzers, which convert energy into hydrogen or other gases, use electrocatalysts to promote chemical reactions. Electrocatalysts that can activate such reactions tend to be unstable because they can corrode in the highly acidic or basic water solutions that are used in fuel cells or electrolyzers.

A team led by Jeffrey Greeley, an associate professor of chemical engineering, has identified the structure for an electrocatalyst made of nickel nanoislands deposited on platinum that is both active and stable. This design created properties in the nickel that Greeley said were unexpected but highly beneficial.

"The reactions led to very stable structures that we would not predict by just looking at the properties of nickel," Greeley said. "It turned out to be quite a surprise."

Greeley's team and collaborators working at Argonne National Laboratory had noticed that nickel placed on a platinum substrate showed potential as an electrocatalyst. Greeley's lab then went to work to figure out how an electrocatalyst with this composition could be both active and stable.

Greeley's team simulated different thicknesses and diameters of nickel on platinum as well as voltages and pH levels in the cells. Placing nickel only one or two atomic layers in thickness and one to two nanometers in diameter created the conditions they wanted.

"They're like little islands of nickel sitting on a sea of platinum," Greeley said.

The ultra-thin layer of nickel is key, Greeley said, because it's at the point where the two metals come together that all the electrochemical activity occurs. And since there are only one or two atomic layers of nickel, almost all of it is reacting with the platinum. That not only creates the catalysis needed, but changes the nickel in a way that keeps it from oxidizing, providing the stability.

Collaborators at Argonne then analyzed the nickel-platinum structure and confirmed the properties Greeley and his team expected the electrocatalyst to have.

Next, Greeley plans to test similar structures with different metals, such as replacing platinum with gold or the nickel with cobalt, as well as modifying pH and voltages. He believes other more stable and active combinations may be found using his computational analysis.

###

The U.S. Department of Energy supported the research. The research was published in May by the journal Nature Energy.

####

For more information, please click here

Contacts:
Writer: Brian Wallheimer: 765-532-0233,
Contact: Jim Bush, 765-494-2077,
Source: Jeffrey Greeley, 765-494-1282,

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project