Home > Press > CCNY physicists demonstrate photonic hypercrystals for control of light-matter interaction
![]()  | 
| Image of photonic hypercrystals courtesy of Tal Galfsky | 
Abstract:
Control of light-matter interaction is central to fundamental phenomena and technologies such as photosynthesis, lasers, LEDs and solar cells. City College of New York researchers have now demonstrated a new class of artificial media called photonic hypercrystals that can control light-matter interaction in unprecedented ways.
This could lead to such benefits as ultrafast LEDs for Li-Fi (a wireless technology that transmits high-speed data using visible light communication), enhanced absorption in solar cells and the development of single photon emitters for quantum information processing, said Vinod M. Menon, professor of physics in City College's Division of Science who led the research.
Photonic crystals and metamaterials are two of the most well-known artificial materials used to manipulate light. However, they suffer from drawbacks such as bandwidth limitation and poor light emission. In their research, Menon and his team overcame these drawbacks by developing hypercrystals that take on the best of both photonic crystals and metamaterials and do even better. They demonstrated significant increase in both light emission rate and intensity from nanomaterials embedded inside the hypercrystals.
The emergent properties of the hypercrystals arise from the unique combination of length scales of the features in the hypercrystal as well as the inherent properties of the nanoscale structures.
The CCNY research appears in the latest issue of the Proceedings of the National Academy of Sciences. The team included graduate students Tal Galfsky and Jie Gu from Menon's research group in CCNY's Physics Department and Evgenii Narimanov (Purdue University), who first theoretically predicted the hypercrystals. The research was supported by the Army Research Office, the National Science Foundation - Division of Materials Research MRSEC program, and the Gordon and Betty Moore Foundation.
####
For more information, please click here
Contacts:
Jay Mwamba
212-650-7580
Copyright © City College of New York
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
    Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
Display technology/LEDs/SS Lighting/OLEDs
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Wireless/telecommunications/RF/Antennas/Microwaves
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Possible Futures
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Chip Technology
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
    Programmable electron-induced color router array May 14th, 2025
Optical computing/Photonic computing
    ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
    Programmable electron-induced color router array May 14th, 2025
    Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
    Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Materials/Metamaterials/Magnetoresistance
    First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
    Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
    A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Energy
    Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
    Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Photonics/Optics/Lasers
    ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Research partnerships
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||