Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves

The orange and yellow stripes in this composite image depict matter waves from different experimental runs in the Hulet Lab at Rice University. The stripes show how matter waves change due to rapid magnetic shifts that bring about modulational instability. The left line shows a matter wave before magnetic switching. Subsequent images (to left) show how both repulsive to attractive fluctuations become amplified in the wave. Clear signs of deviations from the initial solid shape can be seen in the third image, and the peaks and valleys in the far left image show how the wave morphs into a "soliton train," a set of standing waves. (Image courtesy of J. Nguyen/Rice University)
The orange and yellow stripes in this composite image depict matter waves from different experimental runs in the Hulet Lab at Rice University. The stripes show how matter waves change due to rapid magnetic shifts that bring about modulational instability. The left line shows a matter wave before magnetic switching. Subsequent images (to left) show how both repulsive to attractive fluctuations become amplified in the wave. Clear signs of deviations from the initial solid shape can be seen in the third image, and the peaks and valleys in the far left image show how the wave morphs into a "soliton train," a set of standing waves. (Image courtesy of J. Nguyen/Rice University)

Abstract:
By precisely controlling the quantum behavior of an ultracold atomic gas, Rice University physicists have created a model system for studying the wave phenomenon that may bring about rogue waves in Earth's oceans.

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves

Houston, TX | Posted on April 27th, 2017

The research appears this week in Science. The researchers said their experimental system could provide clues about the underlying physics of rogue waves -- 100-foot walls of water that are the stuff of sailing lore but were only confirmed scientifically within the past two decades. Recent research has found rogue waves, which can severely damage and sink even the largest ships, may be more common than previously believed.

"We are interested in how self-attracting waves develop," said lead scientist Randy Hulet, Rice's Fayez Sarofim Professor of Physics and Astronomy. "Although our experiment is in the quantum domain, the same physics applies to classical waves, including rogue water waves."

Hulet's lab uses lasers and magnetic traps to cool tiny clouds of an atomic gas to less than one-millionth of a degree above absolute zero, temperatures far colder than the deepest reaches of outer space. At this extreme, quantum mechanical effects take center stage. Atoms can be made to march in lockstep, momentarily vanish or pair up like electrons in superconductors. In 2002, Hulet's team created the first "soliton trains" in ultracold atomic matter. Solitons do not diminish, spread out or change shape as they move. In 2014, Hulet and colleagues showed that two matter wave solitons traveling in opposite directions in a trap would briefly wink out of existence rather than share space as they passed through one another.

Both the 2002 and 2014 findings were remarkably similar to the behavior observed in water wave solitons in a canal in the mid-19th century by Scottish engineer John Scott Russell. He never lost his fascination with solitons and built a model canal in the garden behind his house to study them. For example, he was the first to show that two of the waves moving in opposite directions would pass through one another without interaction.

Mathematically, solitons are the result of a nonlinear attraction, one where the inputs have a disproportionate effect on the output. And any wave-based nonlinear system -- be it waves of water in the deep ocean or waves of ultracold atoms in a trap -- is subject to this and other universal nonlinear effects.

In the latest experiments, Hulet, research scientist Jason Nguyen and graduate student De "Henry" Luo used repulsive interactions to create a cigar-shaped matter wave known as a Bose-Einstein condensate. By rapidly switching the interactions to be attractive, the researchers caused the gas to undergo a "modulational instability," a nonlinear effect in which small, random perturbations in the system become amplified.

"The conditions pick out which perturbations are amplified," said Nguyen, the lead author of the new paper. "When this happens, the Bose-Einstein condensate will divide into a train of individual solitons separated by discrete spaces."

The resulting soliton train is what Hulet's team first created in 2002, but Luo said the new study is the first to experimentally probe the underlying physics of the system to determine whether the structure of a soliton train derives from the starting conditions or evolves dynamically as the system reacts to those conditions. Nguyen, Luo and Hulet were able to answer this question by systematically varying the conditions in their experiments and taking snapshots of the soliton trains every two milliseconds throughout the experiment.

"What we found was that under certain conditions, the number of solitons remains unchanged," Luo said. "This is evidence that the soliton train is born with the characteristics to be stable rather than evolving into such a stable structure over time."

In more than one study over the past decade, physicists and mathematicians have tried to describe the behavior of rogue waves using mathematics that are similar to that used to describe quantum systems, and Hulet said ultracold atomic experiments provide an ideal platform to test new theories about rogue wave dynamics.

"Recreating the precise conditions that bring about a rogue soliton wave in the ocean is going to be difficult, even in a large wave tank," Hulet said. "People are trying to do that, but we can gain insight into the formation of solitons by studying their formation in the quantum, rather than classical, regime."

The research was supported by the National Science Foundation, the Welch Foundation, the Army Research Office Multidisciplinary University Research Initiative and the Office of Naval Research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/RiceUniversityoverview .

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The DOI of the Science Advances paper is: 10.1126/science.aal3220

More information about the Hulet Lab:

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Superconductivity

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Quantum Physics

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project