Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive

On the left, an atomic-force microscopy image shows a nanoporous graphene membrane after a burst test at 100 bars. The image shows that failed micromembranes (the dark black areas) are aligned with wrinkles in the graphene. On the right, two zoomed-in scanning electron microscopy images of graphene membranes show the before (top) and after of a burst test at pressure difference of 30 bars. The images illustrate that membrane failure is associated with intrinsic defects along wrinkles.

Courtesy of the researchers
On the left, an atomic-force microscopy image shows a nanoporous graphene membrane after a burst test at 100 bars. The image shows that failed micromembranes (the dark black areas) are aligned with wrinkles in the graphene. On the right, two zoomed-in scanning electron microscopy images of graphene membranes show the before (top) and after of a burst test at pressure difference of 30 bars. The images illustrate that membrane failure is associated with intrinsic defects along wrinkles. Courtesy of the researchers

Abstract:
A single sheet of graphene, comprising an atom-thin lattice of carbon, may seem rather fragile. But engineers at MIT have found that the ultrathin material is exceptionally sturdy, remaining intact under applied pressures of at least 100 bars. That’s equivalent to about 20 times the pressure produced by a typical kitchen faucet.

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive

Cambridge, MA | Posted on April 24th, 2017

The key to withstanding such high pressures, the researchers found, is pairing graphene with a thin underlying support substrate that is pocked with tiny holes, or pores. The smaller the substrate’s pores, the more resilient the graphene is under high pressure.

Rohit Karnik, an associate professor in MIT’s Department of Mechanical Engineering, says the team’s results, reported today in the journal Nano Letters serve as a guideline for designing tough, graphene-based membranes, particularly for applications such as desalination, in which filtration membranes must withstand high-pressure flows to efficiently remove salt from seawater.

“We’re showing here that graphene has the potential to push the boundaries of high-pressure membrane separations,” Karnik says. “If graphene-based membranes could be developed to do desalination at high pressure, then it opens up a lot of interesting possibilities for energy-efficient desalination at high salinities.”

Karnik’s co-authors are lead author and MIT postdoc Luda Wang, former undergraduate student Christopher Williams, former graduate student Michael Boutilier, and postdoc Piran Kidambi.

Water stressed

Today’s existing membranes desalinate water via reverse osmosis, a process by which pressure is applied to one side of a membrane containing saltwater, to push pure water across the membrane while salt and other molecules are prevented from filtering through.

Many commercial membranes desalinate water under applied pressures of about 50 to 80 bars, above which they tend to get compacted or otherwise suffer in performance. If membranes were able to withstand higher pressures, of 100 bars or greater, they would enable more effective desalination of seawater by recovering more fresh water. High-pressure membranes might also be able to purify extremely salty water, such as the leftover brine from desalination that is typically too concentrated for membranes to push pure water through.

“It’s pretty clear that the stress on water sources is not going away any time soon, and desalination forms a major source of fresh water,” Karnik says. “Reverse osmosis is among the most efficient methods of desalination in terms of energy. If membranes could operate at higher pressures, this would allow higher water recovery at high energy efficiency.”

Turning the pressure up

Karnik and his colleagues set up experiments to see how far they could push graphene’s pressure tolerance. Previous simulations have predicted that graphene, placed on porous supports, can remain intact under high pressure. However, no direct experimental evidence has supported these predictions until now.

The researchers grew sheets of graphene using a technique called chemical vapor deposition, then placed single layers of graphene on thin sheets of porous polycarbonate. Each sheet was designed with pores of a particular size, ranging from 30 nanometers to 3 microns in diameter.

To gauge graphene’s sturdiness, the researchers concentrated on what they termed “micromembranes” — the areas of graphene that were suspended over the underlying substrate’s pores, similar to fine meshwire lying over Swiss cheese holes.

The team placed the graphene-polycarbonate membranes in the middle of a chamber, into the top half of which they pumped argon gas, using a pressure regulator to control the gas’ pressure and flow rate. The researchers also measured the gas flow rate in the bottom half of the chamber, reasoning that any increase in the bottom half’s flow rate would indicate that parts of the graphene membrane had failed, or “burst,” from the pressure created in the top half of the chamber.

They found that graphene, placed over pores that were 200 nanometers wide or smaller, withstood pressures of 100 bars — nearly twice that of pressures commonly encountered in desalination. As the size of the underlying pores decreased, the researchers observed an increase in the number of micromembranes that remained intact. Karnik says the this pore size is essential to determining graphene’s sturdiness.

“Graphene is like a suspension bridge, and the applied pressure is like people standing on that bridge,” Karnik explains. “If five people can stand on a short bridge, that weight, or pressure, is OK. But if the bridge, made with the same rope, is suspended over a larger distance, it experiences more stress, because a greater number of people are standing on it.”

Porous design

“We show graphene can withstand high pressure,” says lead author Luda Wang. “The other part that remains to be shown on large scale is, can it desalinate?”

In other words, can graphene tolerate high pressures while selectively filtering out water from seawater? As a first step toward answering this question, the group fabricated nanoporous graphene to serve as a very simple graphene filter. The researchers used a technique they had previously developed to etch nanometer-sized pores in sheets of graphene. Then they exposed these sheets to increasing pressures.

In general, they found that wrinkles in the graphene had a lot to do with whether micromembranes burst or not, regardless of the pressure applied. Parts of the porous graphene that lay along wrinkles failed or burst, even at pressures as low as 30 bars, while those that were unwrinkled remained intact at pressures up to 100 bars. And again, the smaller the underlying substrate’s pores, the more likely micromembranes in the porous graphene were to survive, even in wrinkled regions.

“As a whole, this study tells us single-layer graphene has the potential of withstanding extremely high pressures, and that 100 bars is not the limit — it’s comfortable in a sense, as long as the pore sizes on which graphene sits are small enough,” Karnik says.

This research was supported, in part, by the MIT Energy Initiative and the U.S. Department of Energy.

###

Written by Jennifer Chu, MIT News Office

####

For more information, please click here

Contacts:
Abby Abazorius
MIT News Office

617.253.2709

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

PAPER: Single-layer graphene membranes withstand ultrahigh applied pressure:

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Materials/Metamaterials/Magnetoresistance

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project