Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Sorting machine for atoms:Researchers at the University of Bonn clear a further hurdle on the path to creating quantum computers

At their sorting machine for Atoms (from left): Dr. Andrea Alberti, Carsten Robens, Prof. Dr. Dieter Meschede, Dr. Wolfgang Alt and Stefan Brakhane.
CREDIT
© Foto: Volker Lannert/Uni Bonn
At their sorting machine for Atoms (from left): Dr. Andrea Alberti, Carsten Robens, Prof. Dr. Dieter Meschede, Dr. Wolfgang Alt and Stefan Brakhane. CREDIT © Foto: Volker Lannert/Uni Bonn

Abstract:
Physicists at the University of Bonn have cleared a further hurdle on the path to creating quantum computers: in a recent study, they present a method with which they can very quickly and precisely sort large numbers of atoms. The work has now been published in Physical Review Letters.

Sorting machine for atoms:Researchers at the University of Bonn clear a further hurdle on the path to creating quantum computers

Bonn, Germany | Posted on February 10th, 2017

Imagine you are standing in a grocery store buying apple juice. Unfortunately, all of the crates are half empty because other customers have removed individual bottles at random. So you carefully fill your crate bottle by bottle. But wait: The neighboring crate is filled in exactly the opposite way! It has bottles where your crate has gaps. If you could lift these bottles in one hit and place them in your crate, it would be full straight away. You could save yourself a lot of work.

Unfortunately, such solutions don't (yet) exist for half-empty drinks crates. However, physicists at the University of Bonn want to sort thousands of atoms however they like in the future in this way - and in a matter of seconds. Around the world, scientists are currently looking for methods that enable sorting processes in the microcosm. The proposal by Bonn-based researchers could push the development of future quantum computers a crucial step forward. This allows atoms to interact with each other in a targeted manner in order to be able to exploit quantum-mechanical effects for calculations. In addition, the particles have to be brought into spatial proximity with one another.

Magnetized atoms on optical conveyor belts

The physicists are using a special property of atoms to create their sorting machine: These rotate around their own axis like little spinning tops. The direction of rotation -- the spin -- can be influenced with microwaves. The physicists thus initially set all of the atoms off in the same direction of rotation in their experiment.

In this state, it was possible to load the particles onto a laser beam. However, beforehand, they had to manipulate the laser in such a way that it matched the spin of its particles -- a process known as polarization. The atoms were then held by the polarized laser beam in such a manner that they were unable to move. Every particle occupies a particular place on the laser beam -- similar to the bottles in the crate.

However, like in the drinks crate, some of the places in the laser beam are also unoccupied. "We thus reversed the direction of rotation in a very targeted manner for individual atoms," explains Dr. Andrea Alberti, the team leader at the Institute of Applied Physics of the University of Bonn. "These particles were then no longer captured by our laser beam. However, we were able to grab them with a second, differently polarized laser beam and thus move them as desired.

The transport beam can, in principle, move as many atoms as one likes at the same time. As this takes place, they retain their position to each other. As in the example with the bottles, several particles can thus be lifted at once and placed in the gaps between other atoms in one go. "Our sorting method is thus extremely efficient," explains the lead author of the study, Carsten Robens. "It does not make any major difference whether we are sorting hundreds or thousands of atoms - the time needed only increases slightly." For the moment, the researchers only worked with four atoms in their experiment, which is now being published.

In principle, the method is suitable for creating any atom pattern. This makes it interesting for solid-state physicists, for instance, to investigate the behavior of semiconductor crystals under certain conditions.

####

For more information, please click here

Contacts:
Dr. Andrea Alberti

49-228-733-471

Carsten Robens
Institute of Applied Physics (IAP)
University of Bonn
Tel. +49 (0)228/73-3484

Copyright © University of Bonn

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication: Carsten Robens, Jonathan Zopes, Wolfgang Alt, Stefan Brakhane, Dieter Meschede, and Andrea Alberti: Low-entropy states of neutral atoms in polarization-synthesized optical lattices; Physical Review Letters:

Related News Press

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Quantum Computing

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project