Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Highly sensitive gas sensors for volatile organic compound detection

(Top) Schematic representation of the SnO2 nanorod sensor for volatile organic compound detection. (Bottom) Sensor response in relation to pore size for 100 ppm ethanol gas changes by 5 orders of magnitude at 250 degrees Celsius. [Adapted with permission from: T. Kida, K. Suematsu, K. Hara, K. Kanie, and A. Muramatsu, 'Ultrasensitive detection of volatile organic compounds by a pore tuning approach using anisotropically shaped SnO2 nanocrystals,' ACS Applied Materials & Interfaces, vol. 8, pp. 35485-35495, Nov. 2016. PMID: 27982565. DOI: 10.1021/acsami.6b13006. Copyright 2016 American Chemical Society.]
CREDIT
Professor Tetsuya Kida
(Top) Schematic representation of the SnO2 nanorod sensor for volatile organic compound detection. (Bottom) Sensor response in relation to pore size for 100 ppm ethanol gas changes by 5 orders of magnitude at 250 degrees Celsius. [Adapted with permission from: T. Kida, K. Suematsu, K. Hara, K. Kanie, and A. Muramatsu, 'Ultrasensitive detection of volatile organic compounds by a pore tuning approach using anisotropically shaped SnO2 nanocrystals,' ACS Applied Materials & Interfaces, vol. 8, pp. 35485-35495, Nov. 2016. PMID: 27982565. DOI: 10.1021/acsami.6b13006. Copyright 2016 American Chemical Society.] CREDIT Professor Tetsuya Kida

Abstract:
Volatile organic compounds (VOCs) are a group of carbon-based chemicals with low evaporation or vaporization points. Some VOCs are harmful to animal or environmental health so sensing these gasses is important for maintaining health and safety. VOCs also occur in nature and can be useful in medical diagnostics, which require highly sensitive sensors to be effective.

Highly sensitive gas sensors for volatile organic compound detection

Kumamoto, Japan | Posted on February 6th, 2017

In an effort to improve VOC detection, a collaboration of Japanese researchers from Kumamoto University, Fukuoka Industrial Technology Center, and Tohoku University set out to improve sensor sensitivity by modifying the particle and pore sizes of Tin-dioxide (SnO2) nanocrystals on sensing film. They knew that particle size was a determining factor in sensor response, so they formulated a method to synthesize SnO2 particles of different sizes and pore distribution patterns, and ran an analysis to determine optimal sensor film particle morphology for various gasses.

Using a hydrothermal method, the researchers synthesized SnO2 nanocubes and nanorods, and created gas-sensing films of various pore and particle sizes. Nanocrystals created in this experiment were developed using organic molecules in an acidic solution, which is a major difference from previous experiments that used cations in an alkaline solution. Films made from nanocubes had very small pores, less than 10 nm, whereas films made with nanorods were distinctly porous with pore sizes larger than 10 nm. Palladium (Pd)-loaded SnO2 nanocrystals were also synthesized to test the idea that Pd-loading would improve sensor response by changing pore sizes. The gasses used to test the new sensors were hydrogen (200 ppm), ethanol (100 ppm), and acetone (100 ppm), each of which are known biomarkers for glucose malabsorption, alcohol intoxication, and diabetic ketoacidosis respectively. Sensor response (S) was calculated using a ratio of electrical resistance produced in air (Ra) to the resistance produced by the testing gas (Rg) (S=Ra/Rg).

The research team found that the sensors had the best response when using long (500 nm) nanorods at a temperature of approximately 250 degrees Celsius, except for the H2 sensor, which responded best at a temperature of 300 degrees Celsius with nanocubes. Furthermore, Pd-loaded sensors had an improved response at 250 degrees Celsius with long nanorods being the best performing nanocrystal morphology for each of the gasses tested. "Our experiments show that nanocrystal sensors with larger pore sizes gave the best sensor responses. In particular, we found ultra-high sensitivity (increasing by five orders of magnitude) in the devices with largest pore size, the long nanorod sensors," said Professor Tetsuya Kida of Kumamoto University. "This tells us that is beneficial to have precise control over the manufacturing methods of these types of sensors."

Simulations have estimated ethanol detection levels to be in the lower parts-per-billion range, meaning that the devices could feasibly detect alcohol biomarkers in a patient's breath.

One drawback of the new sensors is their relatively long recovery time. Even though the response time was swift, between 15 and 21 seconds, the recovery time fell between 157 to 230 minutes. This was thought to be caused by reaction byproducts remaining on the surface of the sensor film. Additionally, experimental and simulation results for ethanol showed that sensors with pore sizes over 80 nm are prone to saturate. However, it is likely that this can be overcome by pore size optimization and controlling the sensor film electrical resistance.

###

Details about this research may be found online at ACS Publications' Applied Materials & Interfaces.

####

For more information, please click here

Contacts:
J. Sanderson

Copyright © Kumamoto University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

[Citation]

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project