Home > Press > New 'needle-pulse' beam pattern packs a punch
![]() |
At left, Miguel Alonso, professor of optics, and Kevin Parker, the William F. May Professor of Engineering, with the 'analytically beautiful mathematical solution' Alonso devised for the new beam pattern they describe in a recent paper in Optics Express. CREDIT Photo by J. Adam Fenster/University of Rochester |
Abstract:
A new beam pattern devised by University of Rochester researchers could bring unprecedented sharpness to ultrasound and radar images, burn precise holes in manufactured materials at a nano scale -- even etch new properties onto their surfaces.
These are just a few of the items on the "Christmas tree" of possible applications for the beam pattern that Miguel Alonso, professor of optics, and Kevin Parker, the William F. May Professor of Engineering, describe in a recent paper in Optics Express.
The pattern results from what Parker calls "an analytically beautiful mathematical solution" that Alonso devised. It causes a light or sound wave to collapse inward, forming -- during a mere nanosecond or less -- an incredibly thin, intense beam before the wave expands outward again.
"All the energy fits together in time and space so it comes together -- BAM! -- like a crescendo," says Parker, explosively clapping his hands for emphasis. "It can be done with an optical light wave, with ultrasound, radar, sonar -- it will work for all of them."
Most traditional beam patterns maintain a persistent shape as long as the source is operating. However, they are not as intense as the beam created by Parker and Alonso, which the researchers call a "needle pulse beam." "It is very localized, with no extensions or side lobes that would carry energy away from the main beam," says Alonso.
Side lobes, radiating off a beam like the halos sometimes seen around a car headlight, are especially problematic in ultrasound. "Side lobes are the enemy," Alonso says. "You want to direct all of your ultrasound wave to the one thing you want to image, so then, whatever is reflected back will tell you about that one thing. If you're also getting a diffusion of waves elsewhere, it blurs the image."
Because it is incredibly narrow, the new beam "makes it possible to resolve things at exquisite resolutions, where you need to separate tiny things that are close together," Parker says, adding that the beam could have applications not only for ultrasound, but microscopy, radar, and sonar.
According to Alonso, industrial applications might include any form of laser materials processing that involves putting as much light as possible on a given line.
The idea for the needle pulse beam originated with Parker, an expert in ultrasound, who for inspiration often peruses mathematical functions from a century or more ago in the "ancient texts."
"I could see a general form of the solution; but I couldn't get past the equation," he says "So I went to the person (Alonso) who I consider the world's leading expert on optical theory and mathematics."
They came up with various expressions that were "mathematically correct," Alonso says, but corresponded to beams requiring an infinite amount of energy. The solution--"a particular mathematical trick" that could apply to a beam with finite energy -- came to him while swimming with his wife in Lake Ontario.
"Many of the ideas I have do not happen at my desk," Alonso says. "It happens while I'm riding my bicycle, or in the shower, or swimming, or doing something else--away from all the paperwork."
Parker says this discovery continues an international quest that began at the University of Rochester. In 1986 -- in the face of worldwide skepticism -- a University team including Joseph Eberly, the Andrew Carnegie Professor of Physics and professor of optics, offered evidence of an unexpected new, diffraction-free light form. The so-called Bessel beam is now widely used.
"It had been decades since anyone formulated a new type of beam," Parker says. "Then, as soon as the Bessel beam was announced, people were thinking there may be other new beams out there. The race was on.
"Finding a new beam pattern is a like finding a new element. It doesn't happen very often."
####
For more information, please click here
Contacts:
Bob Marcotte
585-273-5239
Copyright © University of Rochester
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Physics
Imaging
Turning up the signal November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Optical computing/Photonic computing
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Tools
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Turning up the signal November 8th, 2024
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Photonics/Optics/Lasers
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |