Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility

A simulation of one-dimensional boron under stress shows the theoretical material changing phase from a ribbon to a chain of atoms when pulled. The chain returns to ribbon form when the stress is relieved. Credit: Yakobson Group/Rice University
A simulation of one-dimensional boron under stress shows the theoretical material changing phase from a ribbon to a chain of atoms when pulled. The chain returns to ribbon form when the stress is relieved.

Credit: Yakobson Group/Rice University

Abstract:
Hold on, there, graphene. You might think you're the most interesting new nanomaterial of the century, but boron might already have you beat, according to scientists at Rice University.



1 D boron stretched to breaking

BR>
1 D boron stretches and recovers

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility

Houston, TX | Posted on January 26th, 2017

A Rice team that simulated one-dimensional forms of boron -- both two-atom-wide ribbons and single-atom chains -- found they possess unique properties. The new findings appear this week in the Journal of the American Chemical Society.

For example, if metallic ribbons of boron are stretched, they morph into antiferromagnetic semiconducting chains, and when released they fold back into ribbons.

The 1-D boron materials also have mechanical stiffness on a par with the highest-performing known nanomaterials.

And they can act as nanoscale, constant-force springs.

Experimental labs are making progress in synthesizing atom-thin and fullerene-type boron, which led Rice researcher Boris Yakobson to think 1-D boron may eventually become real as well.

Yakobson's lab creates atom-level computer simulations of materials that do not necessarily exist -- yet. Simulating and testing their energetic properties helps guide experimentalists working to create real-world materials. Carbon-atom chains known as carbyne, boron fullerenes and two-dimensional films called borophene, all predicted by the Rice group, have since been created by labs.

"Our work on carbyne and with planar boron got us thinking that a one-dimensional chain of boron atoms is also a possible and intriguing structure," Yakobson said. "We wanted to know if it is stable and what the properties would be. That's where modern theoretical-computational methods are impressive, because one can do pretty realistic assessments of non-existing structures.

"Even if they never exist, they're still important since we're probing the limits of possibility, sort of the final frontier," he said.

One-dimensional boron forms two well-defined phases -- chains and ribbons -- which are linked by a "reversible phase transition," meaning they can turn from one form to the other and back.

To demonstrate these interesting chemomechanics, the researchers used a computer to "pull" the ends of a simulated boron ribbon with 64 atoms. This forced the atoms to rearrange into a single carbyne-like chain. In their simulation, the researchers left a fragment of the ribbon to serve as a seed, and when they released the tension, the atoms from the chain neatly returned to ribbon form.

"Boron is very different from carbon," Yakobson said. "It prefers to form a double row of atoms, like a truss used in bridge construction. This appears to be the most stable, lowest-energy state.

"If you pull on it, it starts unfolding; the atoms yield to this monatomic thread. And if you release the force, it folds back," he said. "That's quite fun, structurally, and at the same time it changes the electronic properties.

"That makes it an interesting combination: When you stretch it halfway, you may have a portion of ribbon and a portion of chain. Because one of them is metal and the other is a semiconductor, this becomes a one-dimensional, adjustable Schottky junction." A Schottky junction is a barrier to electrons at a metal-semiconductor junction and is commonly used in diodes that allow current to flow in only one direction.

As a ribbon, boron is "a true 1-D metal robust to distortion of its crystalline lattice (a property known as Peierls distortion)," the researchers wrote. That truss-like construct gives the material extraordinary stiffness, a measure of its ability to resist deformation from an applied force.

As a chain of atoms, the material is also a strain-tunable, wide-gap antiferromagnetic semiconductor. In an antiferromagnet, the atomic moments -- the direction of the atoms' "up" or "down" spin states -- align in opposite directions. This coupling of magnetic state and electronic transport may be of great interest to researchers studying spintronics, in which spin states may be manipulated to create high-performance electronic devices. "It may be very useful because instead of charge transport, you can have spin transport. That's considered an important direction for devices that make use of spintronics," he said.

One-dimensional boron's springiness is also interesting, Yakobson said. "It's also a special spring, a constant-force spring," he said. "The more you stretch a mechanical spring, the more the force goes up. But in the case of 1-D boron, the same force is required until the spring becomes fully stretched. If you keep pulling, it will break. But if you release the force, it completely folds back into a ribbon. It's a mechanically nice structure." That property could be useful in nanoscale sensors to gauge very small forces, he said.

Rice alumna Mingjie Liu, now a research associate at Brookhaven National Laboratory, is lead author of the paper. Vasilii Artyukhov, also a Rice alumnus and now a research scientist at Quantlab Financial, is co-author. Yakobson is the Karl F. Hasselmann Professor of Materials Science and NanoEngineering and a professor of chemistry.

The office of Naval Research and the Robert Welch Foundation supported the research. Calculations were performed on Rice's National Science Foundation-supported DAVinCI supercomputer, which was administered by Rice's Center for Research Computing and procured in partnership with the Ken Kennedy Institute for Information Technology.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/RiceUniversityoverview .

For more information, please click here

Contacts:
Jeff Falk
713-348-6775


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

2 Dimensional Materials

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project