Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NIST Device for Detecting Subatomic-Scale Motion Has Potential Robotics, Homeland Security Applications

Schematic shows laser light interacting with a plasmonic gap resonator, a miniature device designed at NIST to measure with unprecedented precision the nanoscale motions of nanoparticles. An incident laser beam (pink beam at left) strikes the resonator, which consists of two layers of gold separated by an air gap. The top gold layer is embedded in an array of tiny cantilevers (violet)—vibrating devices resembling a miniature diving board. When a cantilever moves, it changes the width of the air gap, which, in turn, changes the intensity of the laser light reflected from the resonator. The modulation of the light reveals the displacement of the tiny cantilever.
Credit: NIST Center for Nanoscale Science and Technology
Schematic shows laser light interacting with a plasmonic gap resonator, a miniature device designed at NIST to measure with unprecedented precision the nanoscale motions of nanoparticles. An incident laser beam (pink beam at left) strikes the resonator, which consists of two layers of gold separated by an air gap. The top gold layer is embedded in an array of tiny cantilevers (violet)—vibrating devices resembling a miniature diving board. When a cantilever moves, it changes the width of the air gap, which, in turn, changes the intensity of the laser light reflected from the resonator. The modulation of the light reveals the displacement of the tiny cantilever. Credit: NIST Center for Nanoscale Science and Technology

Abstract:
Scientists at the National Institute of Standards and Technology (NIST) have developed a new device that measures the motion of super-tiny particles traversing distances almost unimaginably small—shorter than the diameter of a hydrogen atom, or less than one-millionth the width of a human hair. Not only can the handheld device sense the atomic-scale motion of its tiny parts with unprecedented precision, but the researchers have devised a method to mass produce the highly sensitive measuring tool.

NIST Device for Detecting Subatomic-Scale Motion Has Potential Robotics, Homeland Security Applications

Gaithersburg, MD | Posted on December 16th, 2016

It’s relatively easy to measure small movements of large objects but much more difficult when the moving parts are on the scale of nanometers, or billionths of a meter. The ability to accurately measure tiny displacements of microscopic bodies has applications in sensing trace amounts of hazardous biological or chemical agents, perfecting the movement of miniature robots, accurately deploying airbags and detecting extremely weak sound waves traveling through thin films.

NIST physicists Brian Roxworthy and Vladimir Aksyuk describe their work (link is external) in the Dec. 6, 2016, Nature Communications.

The researchers measured subatomic-scale motion in a gold nanoparticle. They did this by engineering a small air gap, about 15 nanometers in width, between the gold nanoparticle and a gold sheet. This gap is so small that laser light cannot penetrate it.

However, the light energized surface plasmons—the collective, wave-like motion of groups of electrons confined to travel along the boundary between the gold surface and the air.

The researchers exploited the light’s wavelength, the distance between successive peaks of the light wave. With the right choice of wavelength, or equivalently, its frequency, the laser light causes plasmons of a particular frequency to oscillate back and forth, or resonate, along the gap, like the reverberations of a plucked guitar string. Meanwhile, as the nanoparticle moves, it changes the width of the gap and, like tuning a guitar string, changes the frequency at which the plasmons resonate.

The interaction between the laser light and the plasmons is critical for sensing tiny displacements from nanoscale particles, notes Aksyuk. Light can’t easily detect the location or motion of an object smaller than the wavelength of the laser, but converting the light to plasmons overcomes this limitation. Because the plasmons are confined to the tiny gap, they are more sensitive than light is for sensing the motion of small objects like the gold nanoparticle.

The amount of laser light reflected back from the plasmon device reveals the width of the gap and the motion of the nanoparticle. Suppose, for example, that the gap changes—due to the motion of the nanoparticle—in such a way that the natural frequency, or resonance, of the plasmons more closely matches the frequency of the laser light. In that case, the plasmons are able to absorb more energy from the laser light, and less light is reflected.

To use this motion-sensing technique in a practical device, Aksyuk and Roxworthy embedded the gold nanoparticle in a microscopic-scale mechanical structure—a vibrating cantilever, sort of a miniature diving board—that was a few micrometers long, made of silicon nitride. Even when they’re not set in motion, such devices never sit perfectly still, but vibrate at high frequency, jostled by the random motion of their molecules at room temperature. Even though the amplitude of the vibration was tiny—moving subatomic distances—it was easy to detect with the new plasmonic technique. Similar, though typically larger, mechanical structures are commonly used for both scientific measurements and practical sensors; for example, detecting motion and orientation in cars and smartphones. The NIST scientists hope their new way of measuring motion at the nanoscale will help to further miniaturize and improve performance of many such micromechanical systems.

“This architecture paves the way for advances in nanomechanical sensing,” the researchers write. “We can detect tiny motion more locally and precisely with these plasmonic resonators than any other way of doing it,” said Aksyuk.

The team’s fabrication approach allows production of some 25,000 of the devices on a computer chip, with each device tailored to detect motion according to the needs of the manufacturer.

Roxworthy and Aksyuk, the two authors of the new paper, work in NIST’s Center for Nanoscale Science and Technology (CNST).

####

For more information, please click here

Contacts:
Ben Stein
(link sends e-mail)
(301) 975-2763

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

B.J. Roxworthy and V.A. Aksyuk. Nanomechanical motion transduction with a scalable localized gap plasmon architecture. Nature Communications. December 6, 2016. DOI: 10.1038/ncomms13746 (link is external):

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Optical computing/Photonic computing

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project