Home > Press > Fast track control accelerates switching of quantum bits
Intricately shaped pulses of light pave a speedway for the accelerated dynamics of quantum particles, enabling faster switching of a quantum bit. CREDIT Image courtesy Peter Allen. |
Abstract:
From laptops to cellphones, today's technology advances through the ever-increasing speed at which electric charges are directed through circuits. Similarly, speeding up control over quantum states in atomic and nanoscale systems could lead to leaps for the emerging field of quantum technology.
An international collaboration between physicists at the University of Chicago, Argonne National Laboratory, McGill University, and the University of Konstanz recently demonstrated a new framework for faster control of a quantum bit. First published online Nov. 28, 2016, in Nature Physics, their experiments on a single electron in a diamond chip could create quantum devices that are less to prone to errors when operated at high speeds.
Accelerating quantum dynamics
To understand their experiment, one can look to the ultimate setting for speed in classical dynamics: the oval racetracks at the Indianapolis or Daytona 500. To enable the racecars to navigate the turns at awesome speeds, the racetrack's pavement is "banked" by up to 30 degrees. A student in Newtonian mechanics could explain that this inward slope of the pavement allows the normal force provided by the road to help cancel the car's centrifugal acceleration, or its tendency to slide outward from the turn. The greater the speed, the greater the bank angle that is required.
"The dynamics of quantum particles behave analogously," said Aashish Clerk, professor of theoretical physics at McGill University. "Although the equations of motion are different, to accurately change the state of a quantum particle at high speeds, you need to design the right track to impart the right forces."
Clerk, together with McGill postdoctoral fellows Alexandre Baksic and Hugo Ribeiro, formulated a new technique to enable faster quantum dynamics by deftly absorbing detrimental accelerations felt by the quantum particle. These accelerations, unless compensated, would divert the particle from its intended trajectory in the space of quantum states, similar to how the centrifugal acceleration deflects the racecar from its intended racing line on the track.
Through conversations with members of his own group and the Clerk group, David Awschalom, professor in spintronics and quantum information at the Institute for Molecular Engineering in the University of Chicago, realized that the new theory could be used to speed up the diamond-based quantum devices in his labs. However, just as constructing the banked speedways presented challenges in civil engineering, experimentally executing the control sequences envisioned by Clerk and co-workers presented ones in quantum engineering.
Building the quantum fast track required shining intricately-shaped, synchronized laser pulses on single electrons trapped at defects inside their diamond chips. This experimental feat was achieved by lead author Brian Zhou, working with Christopher Yale, F. Joseph Heremans, and Paul Jerger.
"We demonstrated that these new protocols could flip the state of a quantum bit, from 'off' to 'on,' 300% faster than conventional methods," said Awschalom, also a senior scientist at Argonne National Laboratory. "Shaving every nanosecond from the operation time is essential to reduce the impact of quantum decoherence," he explained, referring to the process by which quantum information is lost to the environment
Professor Guido Burkard and Adrian Auer from the University of Konstanz joined the Awschalom and Clerk groups to examine the data from the experiments. A leading expert in diamond-based quantum systems, Burkard remarked, "What is promising for translating these techniques beyond the laboratory is that they are effective even when the system is not perfectly isolated."
The researchers anticipate that their methods can be further applied for fast and accurate control over the physical motion of atoms or the transfer of quantum states between different systems, and convey benefits to quantum applications, such as secure communications and simulation of complex systems.
Funding: US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; Air Force Office of Scientific Research; National Science Foundation; German Research Foundation.
####
For more information, please click here
Contacts:
Greg Borzo
773-702-8366
Copyright © University of Chicago
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Quantum communication
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Quantum Computing
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||