Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells

In a light harvesting quantum photocell, particles of light (photons) can efficiently generate electrons. When two absorbing channels are used, solar power entering the system through the two absorbers (a and b) efficiently generates power in the machine (M).
CREDIT
Nathaniel Gabor and Tamar Melen
In a light harvesting quantum photocell, particles of light (photons) can efficiently generate electrons. When two absorbing channels are used, solar power entering the system through the two absorbers (a and b) efficiently generates power in the machine (M). CREDIT Nathaniel Gabor and Tamar Melen

Abstract:
A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient. The findings were recently published in the journal Nano Letters.

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells

Riverside, CA | Posted on November 30th, 2016

Nathan Gabor is focused on experimental condensed matter physics, and uses light to probe the fundamental laws of quantum mechanics. But, he got interested in photosynthesis when a question popped into his head in 2010: Why are plants green? He soon discovered that no one really knows.

During the past six years, he sought to help change that by combining his background in physics with a deep dive into biology.

He set out to re-think solar energy conversion by asking the question: can we make materials for solar cells that more efficiently absorb the fluctuating amount of energy from the sun. Plants have evolved to do this, but current affordable solar cells - which are at best 20 percent efficient - do not control these sudden changes in solar power, Gabor said. That results in a lot of wasted energy and helps prevent wide-scale adoption of solar cells as an energy source.

Gabor, and several other UC Riverside physicists, addressed the problem by designing a new type of quantum heat engine photocell, which helps manipulate the flow of energy in solar cells. The design incorporates a heat engine photocell that absorbs photons from the sun and converts the photon energy into electricity.

Surprisingly, the researchers found that the quantum heat engine photocell could regulate solar power conversion without requiring active feedback or adaptive control mechanisms. In conventional photovoltaic technology, which is used on rooftops and solar farms today, fluctuations in solar power must be suppressed by voltage converters and feedback controllers, which dramatically reduce the overall efficiency.

The goal of the UC Riverside teams was to design the simplest photocell that matches the amount of solar power from the sun as close as possible to the average power demand and to suppress energy fluctuations to avoid the accumulation of excess energy.

The researchers compared the two simplest quantum mechanical photocell systems: one in which the photocell absorbed only a single color of light, and the other in which the photocell absorbed two colors. They found that by simply incorporating two photon-absorbing channels, rather than only one, the regulation of energy flow emerges naturally within the photocell.

The basic operating principle is that one channel absorbs at a wavelength for which the average input power is high, while the other absorbs at low power. The photocell switches between high and low power to convert varying levels of solar power into a steady-state output.

When Gabor's team applied these simple models to the measured solar spectrum on Earth's surface, they discovered that the absorption of green light, the most radiant portion of the solar power spectrum per unit wavelength, provides no regulatory benefit and should therefore be avoided. They systematically optimized the photocell parameters to reduce solar energy fluctuations, and found that the absorption spectrum looks nearly identical to the absorption spectrum observed in photosynthetic green plants.

The findings led the researchers to propose that natural regulation of energy they found in the quantum heat engine photocell may play a critical role in the photosynthesis in plants, perhaps explaining the predominance of green plants on Earth.

Other researchers have recently found that several molecular structures in plants, including chlorophyll a and b molecules, could be critical in preventing the accumulation of excess energy in plants, which could kill them. The UC Riverside researchers found that the molecular structure of the quantum heat engine photocell they studied is very similar to the structure of photosynthetic molecules that incorporate pairs of chlorophyll.

The hypothesis set out by Gabor and his team is the first to connect quantum mechanical structure to the greenness of plants, and provides a clear set of tests for researchers aiming to verify natural regulation. Equally important, their design allows regulation without active input, a process made possible by the photocell's quantum mechanical structure.

###

The paper is called "Natural Regulation of Energy Flow in a Green Quantum Photocell." In addition to Gabor, the authors are: Trevor Arp, a graduate student working with Gabor; Yafis Barlas, a research scientist in the SHINES center and Vivek Aji, an associate professor in the UC Riverside Department of Physics and Astronomy.

This work was supported by the Air Force Office of Scientific Research; the SHINES center, an Energy Frontier Research Center at UC Riverside funded by the U.S. Department of Energy; and the Fellowships and Internships in Extremely Large Data Sets (FIELDS) program, a research center at UC Riverside funded by the National Aeronautics and Space Administration.

####

For more information, please click here

Contacts:
Sean Nealon

951-827-1287

Copyright © University of California - Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download paper:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project