Home > Press > Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics
Rice University researchers used computer models to determine the best way to disperse heat produced by microelectronic devices using gallium nitride semiconductors and diamond. A patterned surface and a layer of atom-thick graphene helped transport phonons from the semiconductor to the heat sink. Credit: Lei Tao/Rice University |
Abstract:
Bumpy surfaces with graphene between would help dissipate heat in next-generation microelectronic devices, according to Rice University scientists.
Their theoretical studies show that enhancing the interface between gallium nitride semiconductors and diamond heat sinks would allow phonons – quasiparticles of sound that also carry heat – to disperse more efficiently. Heat sinks are used to carry heat away from electronic devices.
Rice computer models replaced the flat interface between the materials with a nanostructured pattern and added a layer of graphene, the atom-thick form of carbon, as a way to dramatically improve heat transfer, said Rice materials scientist Rouzbeh Shahsavari.
The new work by Shahsavari, Rice graduate student and lead author Lei Tao and postdoctoral researcher Sreeprasad Sreenivasan appeared this month in the American Chemical Society journal ACS Applied Materials and Interfaces.
No matter the size, electronic devices need to disperse the heat they produce, Shahsavari said. "With the current trend of constant increases in power and device miniaturization, efficient heat management has become a serious issue for reliability and performance," he said. "Oftentimes, the individual materials in hybrid nano- and microelectronic devices function well but the interface of different materials is the bottleneck for heat diffusion."
Gallium nitride has become a strong candidate for use in high-power, high-temperature applications like uninterruptible power supplies, motors, solar converters and hybrid vehicles, he said. Diamond is an excellent heat sink, but its atomic interface with gallium nitride is hard for phonons to traverse.
The researchers simulated 48 distinct grid patterns with square or round graphene pillars and tuned them to match phonon vibration frequencies between the materials. Sinking a dense pattern of small squares into the diamond showed a dramatic decrease in thermal boundary resistance of up to 80 percent. A layer of graphene between the materials further reduced resistance by 33 percent.
Fine-tuning the pillar length, size, shape, hierarchy, density and order will be important, Lei said.
"With current and emerging advancements in nanofabrication like nanolithography, it is now possible to go beyond the conventional planer interfaces and create strategically patterned interfaces coated with nanomaterials to significantly boost heat transport," Shahsavari said. "Our strategy is amenable to several other hybrid materials and provides novel insights to overcome the thermal boundary resistance bottleneck."
Shahsavari is an assistant professor of civil and environmental engineering and of materials science and nanoengineering.
The researchers used the Blue Gene supercomputer and the National Science Foundation-supported DAVinCI supercomputer, which are both administered by Rice’s Center for Research Computing and were procured in partnership with Rice’s Ken Kennedy Institute for Information Technology.
####
About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/RiceUniversityoverview .
Follow Rice News and Media Relations via Twitter @RiceUNews
For more information, please click here
Contacts:
Jeff Falk
713-348-6775
Mike Williams
713-348-6728
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Multiscale Materials Laboratory home page:
George R. Brown School of Engineering:
Rice Department of Civil and Environmental Engineering:
Rice Department of Materials Science and NanoEngineering:
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Hardware
The present and future of computing get a boost from new research July 21st, 2023
A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020
Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||