Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 'Atomic sandwiches' could make computers 100X greener

An extra plane of iron atoms was inserted every ten repeats, substantially changing the magnetic properties. The jagged appearance of the lutetium atoms is due to atomic rumpling.
An extra plane of iron atoms was inserted every ten repeats, substantially changing the magnetic properties. The jagged appearance of the lutetium atoms is due to atomic rumpling.

Abstract:
Researchers have engineered a material that could lead to a new generation of computing devices, packing in more computing power while consuming a fraction of the energy that today's electronics require.

'Atomic sandwiches' could make computers 100X greener

Ann Arbor, MI | Posted on October 10th, 2016

Known as a magnetoelectric multiferroic material, it combines electrical and magnetic properties at room temperature and relies on a phenomenon called "planar rumpling."

The new material sandwiches together individual layers of atoms, producing a thin film with magnetic polarity that can be flipped from positive to negative or vice versa with small pulses of electricity. In the future, device-makers could use this property to store digital 0's and 1's, the binary backbone that underpins computing devices.

"Before this work, there was only one other room-temperature multiferroic whose magnetic properties could be controlled by electricity," said John Heron, assistant professor in the Department of Materials Science and Engineering at the University of Michigan, who worked on the material with researchers at Cornell University. "That electrical control is what excites electronics makers, so this is a huge step forward."

Room-temperature multiferroics are a hotly pursued goal in the electronics field because they require much less power to read and write data than today's semiconductor-based devices. In addition, their data doesn't vanish when the power is shut off. Those properties could enable devices that require only brief pulses of electricity instead of the constant stream that's needed for current electronics, using an estimated 100 times less energy.

"Electronics are the fastest-growing consumer of energy worldwide," said Ramamoorthy Ramesh, associate laboratory director for energy technologies at Lawrence Berkeley National Laboratory. "Today, about 5 percent of our total global energy consumption is spent on electronics, and that's projected to grow to 40-50 percent by 2030 if we continue at the current pace and if there are no major advances in the field that lead to lower energy consumption."

To create the new material, the researchers started with thin, atomically precise films of hexagonal lutetium iron oxide (LuFeO3), a material known to be a robust ferroelectric, but not strongly magnetic. Lutetium iron oxide consists of alternating monolayers of lutetium oxide and iron oxide. They then used a technique called molecular-beam epitaxy to add one extra monolayer of iron oxide to every 10 atomic repeats of the single-single monolayer pattern.

"We were essentially spray painting individual atoms of iron, lutetium and oxygen to achieve a new atomic structure that exhibits stronger magnetic properties," said Darrell Schlom, a materials science and engineering professor at Cornell and senior author of a study on the work recently published in Nature.

The result was a new material that combines a phenomenon in lutetium oxide called "planar rumpling" with the magnetic properties of iron oxide to achieve multiferroic properties at room temperature.

Heron explains that the lutetium exhibits atomic-level displacements called rumples. Visible under an electron microscope, the rumples enhance the magnetism in the material, allowing it to persist at room temperature. The rumples can be moved by applying an electric field, and are enough to nudge the magnetic field in the neighboring layer of iron oxide from positive to negative or vice versa, creating a material whose magnetic properties can be controlled with electricity--a "magnetoelectric multiferroic."

While Heron believes a viable multiferroic device is likely several years off, the work puts the field closer to its goal of devices that continue the computing industry's speed improvements while consuming less power. This is essential if the electronics industry is to continue to advance according to Moore's law, which predicts that the power of integrated circuits will double every year. This has proven true since the 1960s, but experts predict that current silicon-based technology may be approaching its limits.

####

About University of Michigan
U-M Sustainability fosters a more sustainable world through collaborations across campus and beyond aimed at educating students, generating new knowledge, and minimizing our environmental footprint. Learn more at sustainability.umich.edu.

For more information, please click here

Contacts:
Gabe Cherry

734-763-2937

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Study: Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic

Related News Press

News and information

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Magnetism/Magnons

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Hardware

The present and future of computing get a boost from new research July 21st, 2023

A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Possible Futures

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Chip Technology

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Discoveries

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Announcements

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project