Home > Press > UCLA chemists report new insights about properties of matter at the nanoscale: Research may lead to new, smaller molecular machines
Xing Jiang, Miguel García-Garibay/UCLA Chemistry and Biochemistry A fluid with a viscosity like water enters UCLA-R3, where its viscosity at the nanoscale becomes like honey. |
Abstract:
UCLA nanoscience researchers have determined that a fluid that behaves similarly to water in our day-to-day lives becomes as heavy as honey when trapped in a nanocage of a porous solid, offering new insights into how matter behaves in the nanoscale world.
"We are learning more and more about the properties of matter at the nanoscale so that we can design machines with specific functions," said senior author Miguel García-Garibay, dean of the UCLA Division of Physical Sciences and professor of chemistry and biochemistry.
Just how small is the nanoscale? A nanometer is less than 1/1,000 the size of a red blood cell and about 1/20,000 the diameter of a human hair. Despite years of research by scientists around the world, the extraordinarily small size of matter at the nanoscale has made it challenging to learn how motion works at this scale.
"This exciting research, supported by the National Science Foundation, represents a seminal advance in the field of molecular machines," said Eugene Zubarev, a program director at the NSF. "It will certainly stimulate further work, both in basic research and real-life applications of molecular electronics and miniaturized devices. Miguel Garcia-Garibay is among the pioneers of this field and has a very strong record of high-impact work and ground-breaking discoveries."
Possible uses for complex nanomachines that could be much smaller than a cell include placing a pharmaceutical in a nanocage and releasing the cargo inside a cell, to kill a cancer cell, for example; transporting molecules for medical reasons; designing molecular computers that potentially could be placed inside your body to detect disease before you are aware of any symptoms; or perhaps even to design new forms of matter.
To gain this new understanding into the behavior of matter at the nanoscale, García-Garibay's research group designed three rotating nanomaterials known as MOFs, or metal-organic frameworks, which they call UCLA-R1, UCLA-R2 and UCLA-R3 (the "r" stands for rotor). MOFs, sometimes described as crystal sponges, have pores -- openings which can store gases, or in this case, liquid.
Studying the motion of the rotors allowed the researchers to isolate the role a fluid's viscosity plays at the nanoscale. With UCLA-R1 and UCLA-R2 the molecular rotors occupy a very small space and hinder one another's motion. But in the case of UCLA-R3, nothing slowed down the rotors inside the nanocage except molecules of liquid.
García-Garibay's research group measured how fast molecules rotated in the crystals. Each crystal has quadrillions of molecules rotating inside a nanocage, and the chemists know the position of each molecule.
UCLA-R3 was built with large molecular rotors that move under the influence of the viscous forces exerted by 10 molecules of liquid trapped in their nanoscale surroundings.
"It is very common when you have a group of rotating molecules that the rotors are hindered by something within the structure with which they interact -- but not in UCLA-R3," said García-Garibay, a member of the California NanoSystems Institute at UCLA. "The design of UCLA-R3 was successful. We want to be able to control the viscosity to make the rotors interact with one another; we want to understand the viscosity and the thermal energy to design molecules that display particular actions. We want to control the interactions among molecules so they can interact with one another and with external electric fields."
García-Garibay's research team has been working for 10 years on motion in crystals and designing molecular motors in crystals. Why is this so important?
"I can get a precise picture of the molecules in the crystals, the precise arrangement of atoms, with no uncertainty," García-Garibay said. "This provides a large level of control, which enables us to learn the different principles governing molecular functions at the nanoscale."
García-Garibay hopes to design crystals that take advantage of properties of light, and whose applications could include advances in communications technology, optical computing, sensing and the field of photonics, which takes advantage of the properties of light; light can have enough energy to break and make bonds in molecules.
"If we are able to convert light, which is electromagnetic energy, into motion, or convert motion into electrical energy, then we have the potential to make molecular devices much smaller," he said. "There will be many, many possibilities for what we can do with molecular machines. We don't yet fully understand what the potential of molecular machinery is, but there are many applications that can be developed once we develop a deep understanding of how motion takes place in solids."
###
Co-authors are lead author Xing Jiang, a UCLA graduate student in García-Garibay's laboratory, who this year completed his Ph.D.; Hai-Bao Duan, a visiting scholar from China's Nanjing Xiao Zhuang University who spent a year conducting research in García-Garibay's laboratory; and Saeed Khan, a UCLA crystallographer in the department of chemistry and biochemistry.
The research was funded by the National Science Foundation (grant DMR140268).
García-Garibay will continue his research on molecular motion in crystals and green chemistry during his tenure as dean.
####
For more information, please click here
Contacts:
Stuart Wolpert
310-206-0511
Copyright © UCLA
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
The research is published in the journal ACS Central Science.:
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Molecular Machines
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanotech scientists create world's smallest origami bird March 17th, 2021
Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020
Molecular Nanotechnology
Quantum pumping in molecular junctions August 16th, 2024
Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||