Home > Press > 3-D graphene has promise for bio applications: Rice University-led team welds nanoscale sheets to form tough, porous material
![]()  | 
| A focused ion beam microscope image shows 3-D graphene layers welded together in a block. The material is biocompatible and its material properties meet the standards necessary for consideration as a bone implant, according to researchers at Rice University.  Credit: Ajayan Group/Rice University  | 
Abstract:
Flakes of graphene welded together into solid materials may be suitable for bone implants, according to a study led by Rice University scientists.
The Rice lab of materials scientist Pulickel Ajayan and colleagues in Texas, Brazil and India used spark plasma sintering to weld flakes of graphene oxide into porous solids that compare favorably with the mechanical properties and biocompatibility of titanium, a standard bone-replacement material.
The discovery is the subject of a paper in Advanced Materials.
The researchers believe their technique will give them the ability to create highly complex shapes out of graphene in minutes using graphite molds, which they believe would be easier to process than specialty metals.
"We started thinking about this for bone implants because graphene is one of the most intriguing materials with many possibilities and it's generally biocompatible," said Rice postdoctoral research associate Chandra Sekhar Tiwary, co-lead author of the paper with Dibyendu Chakravarty of the International Advanced Research Center for Powder Metallurgy and New Materials in Hyderabad, India. "Four things are important: its mechanical properties, density, porosity and biocompatibility."
Tiwary said spark plasma sintering is being used in industry to make complex parts, generally with ceramics. "The technique uses a high pulse current that welds the flakes together instantly. You only need high voltage, not high pressure or temperatures," he said. The material they made is nearly 50 percent porous, with a density half that of graphite and a quarter of titanium metal. But it has enough compressive strength -- 40 megapascals -- to qualify it for bone implants, he said. The strength of the bonds between sheets keeps it from disintegrating in water.
The researchers controlled the density of the material by altering the voltage that delivers the highly localized blast of heat that makes the nanoscale welds. Though the experiments were carried out at room temperature, the researchers made graphene solids of various density by raising these sintering temperatures from 200 to 400 degrees Celsius. Samples made at local temperatures of 300 C proved best, Tiwary said. "The nice thing about two-dimensional materials is that they give you a lot of surface area to connect. With graphene, you just need to overcome a small activation barrier to make very strong welds," he said.
With the help of colleagues at Hysitron in Minnesota, the researchers measured the load-bearing capacity of thin sheets of two- to five-layer bonded graphene by repeatedly stressing them with a picoindenter attached to a scanning electron microscope and found they were stable up to 70 micronewtons. Colleagues at the University of Texas MD Anderson Cancer Center successfully cultured cells on the material to show its biocompatibility. As a bonus, the researchers also discovered the sintering process has the ability to reduce graphene oxide flakes to pure bilayer graphene, which makes them stronger and more stable than graphene monolayers or graphene oxide.
"This example demonstrates the possible use of unconventional materials in conventional technologies," Ajayan said. "But these transitions can only be made if materials such as 2-D graphene layers can be scalably made into 3-D solids with appropriate density and strength.
"Engineering junctions and strong interfaces between nanoscale building blocks is the biggest challenge in achieving such goals, but in this case, spark plasma sintering seems to be effective in joining graphene sheets to produce strong 3-D solids," he said.
Co-authors of the paper are graduate student Sruthi Radhakrishnan of Rice and at MD Anderson; researcher Soumya Vinod and graduate student Sehmus Ozden of Rice; Pedro Alves da Silva of the State University of Campinas, Brazil, and the Federal University of ABC, Santo Andre, Brazil; Autreto Cristano Woellner and Professor Douglas Galvão of the State University of Campinas, Brazil; Sanjit Bhowmick and Syed Asif of Hysitron Inc. of Minneapolis; and Sendurai Mani of MD Anderson. Ajayan is chair of Rice’s Department of Materials Science and NanoEngineering, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of chemistry.
The research was supported by the Department of Defense, the U.S. Air Force Office of Scientific Research and its Multidisciplinary University Research Initiative, the Sao Paulo Research Foundation, the Center for Computational Engineering and Sciences at Unicamp, Brazil, and the Government of India Department of Science and Technology.
####
About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for best quality of life and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to tinyurl.com/RiceUniversityoverview.
Follow Rice News and Media Relations via Twitter @RiceUNews
For more information, please click here
Contacts:
David Ruth
713-348-6327
Mike Williams
713-348-6728
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links | 
 Rice Department of Materials Science and NanoEngineering:
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
2 Dimensional Materials
    ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
    First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
    Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Graphene/ Graphite
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Govt.-Legislation/Regulation/Funding/Policy
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Possible Futures
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Nanomedicine
    New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
    Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Military
    Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
    Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
    Single atoms show their true color July 5th, 2024
    NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
    Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
    New discovery aims to improve the design of microelectronic devices September 13th, 2024
    Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Nanobiotechnology
    New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
    Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Research partnerships
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||