Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives

Scientists have proposed a graphene-based sensor that can 'sniff out' a single molecule of explosives.
CREDIT: Graphene-based sensor
Scientists have proposed a graphene-based sensor that can 'sniff out' a single molecule of explosives.

CREDIT: Graphene-based sensor

Abstract:
Physicists from the Moscow Institute of Physics and Technology (MIPT) have found that the two-dimensional form of carbon, known as graphene, might be the ideal material for manufacturing plasmonic devices capable of detecting explosive materials, toxic chemicals, and other organic compounds based on a single molecule, says an article published in Physical Review B.

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives

Moscow, Russia | Posted on August 16th, 2016

Plasmons in constructing high-accuracy electronics and optics

Scientists have long been fascinated by the potential applications of a quasiparticle called the plasmon, a quantum of plasma oscillations. In the case of a solid body, plasmons are the oscillations of free electrons. Of special interest are the effects arising from the surface interactions of electromagnetic waves with plasmons--usually in the context of metals or semimetals, as they have a higher free electron density. Harnessing these effects could bring about a breakthrough in high-accuracy electronics and optics. One possibility opened up by plasmonic effects is the subwavelength light focusing, which increases the sensitivity of plasmonic devices to a point where they can distinguish a single molecule. Such measurements are beyond what any conventional (classical) optical devices can achieve. Unfortunately, plasmons in metals tend to lose energy quickly due to resistance, and for this reason they are not self-sustained, i.e. they need continuous excitation. Scientists are trying to tackle this issue by using composite materials with predefined microstructure, including graphene.

Graphene is an allotrope of carbon in the form of a two-dimensional crystal. It can be visualised as a one-atom-thick honeycomb lattice made of carbon atoms. Two MIPT graduates, Andre Geim and Konstantin Novoselov, were the first to isolate graphene, which won them a Nobel Prize in Physics. Graphene is a semiconductor with extremely high charge carrier mobility. Its electrical conductivity is also exceptionally high, which makes graphene-based transistors possible.

Theoretical physicists give the okay

Although, plasmonic devices have seemed an exciting prospect to pursue from the start, to take advantage of them, it was first necessary to find out whether the technology behind them was feasible. To do this, scientists had to find a numerical solution to the relevant quantum-mechanical equations. This was accomplished by a team of researchers at the Laboratory of Nanostructure Spectroscopy headed by Prof. Yurii Lozovik: they formulated and solved the necessary equation. Their research has led them to develop a quantum model that predicts plasmonic behaviour in graphene. As a result, the scientists described the operation of a surface-plasmon-emitting diode (SPED) and the nanoplasmonic counterpart of the laser--known as the spaser--whose construction involves a graphene layer.

A spaser could be described as a device similar to a laser and operating on the same basic principle. However, to produce radiation, it relies on optical transitions in the gain medium, and the particles emitted are surface plasmons, as opposed to photons produced by a laser. An SPED is different from a spaser in that it is an incoherent source of surface plasmons. It also requires considerably lower pump power. Both devices would operate within the infrared region of the spectrum, which is useful for studying biological molecules.

'The graphene spaser could be used to design compact spectral measurement devices capable of detecting even a single molecule of a substance, which is essential for many potential applications. Such sensors could detect organic molecules based on their characteristic vibrational transitions ('fingerprints'), as the light emitted/absorbed falls into the medium infrared region, which is exactly where the graphene-based spaser operates,' says Alexander Dorofeenko, one of the authors of the study.

####

For more information, please click here

Contacts:
Asya Shepunova

Copyright © Moscow Institute of Physics and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Sensors

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Homeland Security

The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics June 30th, 2023

Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021

UCF researchers generate attosecond light from industrial laser: The ultrafast measurement of the motion of electrons inside atoms, molecules and solids at their natural time scale is known as attosecond science and could have important implications in power generation, chemical- August 25th, 2020

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project