Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold

This is a close up look the vortex laser beam.
CREDIT: University at Buffalo.
This is a close up look the vortex laser beam.

CREDIT: University at Buffalo.

Abstract:
Like a whirlpool, a new light-based communication tool carries data in a swift, circular motion.

Described in a study published today (July 28, 2016) by the journal Science, the optics advancement could become a central component of next generation computers designed to handle society's growing demand for information sharing.

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold

Buffalo, NY | Posted on July 30th, 2016

It may also be a salve to those fretting over the predicted end of Moore's Law, the idea that researchers will find new ways to continue making computers smaller, faster and cheaper.

"To transfer more data while using less energy, we need to rethink what's inside these machines," says Liang Feng, PhD, assistant professor in the Department of Electrical Engineering at the University at Buffalo's School of Engineering and Applied Sciences, and the study's co-lead author.

The other co-lead author is Natalia M. Litchinitser, PhD, professor of electrical engineering at UB.

Additional authors are: Pei Miao and Zhifeng Zhang, PhD candidates at UB; Jingbo Sun, PhD, assistant research professor of electrical engineering at UB; Wiktor Walasik, PhD, postdoctoral researcher at UB; and Stefano Longhi, PhD, professor at the Polytechnic University of Milan in Italy, and UB graduate students.

For decades, researchers have been able to cram evermore components onto silicon-based computer chips. Their success explains why today's smartphones have more computing power than the world's most powerful computers of the 1980s, which cost millions in today's dollars and were the size of a large file cabinet.

But researchers are running into a bottleneck in which existing technology may no longer meet society's demand for data. Predictions vary, but many suggest this could happen within the next five years.

Researchers are addressing the matter in numerous ways including optical communications, which uses light to carry information. Examples of optical communications vary from old lighthouses to modern fiber optic cables used to watch television and browse the internet.

Lasers are a central part of today's optical communication systems. Researchers have been manipulating lasers in various ways, most commonly by funneling different signals into one path, to carry more information. But these techniques -- specifically, wavelength-division multiplexing and time-division multiplexing -- are also reaching their limits.

The UB-led research team is pushing laser technology forward using another light manipulation technique called orbital angular momentum, which distributes the laser in a corkscrew pattern with a vortex at the center.

Usually too large to work on today's computers, the UB-led team was able to shrink the vortex laser to the point where it is compatible with computer chips. Because the laser beam travels in a corkscrew pattern, encoding information into different vortex twists, it's able to carry 10 times or more the amount of information than that of conventional lasers, which move linearly.

The vortex laser is one component of many, such as advanced transmitters and receivers, which will ultimately be needed to continue building more powerful computers and datacenters.

###

The research was supported with grants from the U.S. Army Research Office, the U.S. Department of Energy and National Science Foundation.

####

For more information, please click here

Contacts:
Cory Nealon

716-645-4614

Copyright © University at Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Chip-based dispersion compensation for faster fibre internet: SUTD scientists developed a novel CMOS-compatible, slow-light-based transmission grating device for the dispersion compensation of high-speed data, significantly lowering data transmission errors and paving the way for June 30th, 2023

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Hardware

The present and future of computing get a boost from new research July 21st, 2023

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Optical computing/Photonic computing

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project