Home > Press > Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold
![]()  | 
| This is a close up look the vortex laser beam. CREDIT: University at Buffalo.  | 
Abstract:
Like a whirlpool, a new light-based communication tool carries data in a swift, circular motion.
Described in a study published today (July 28, 2016) by the journal Science, the optics advancement could become a central component of next generation computers designed to handle society's growing demand for information sharing.
It may also be a salve to those fretting over the predicted end of Moore's Law, the idea that researchers will find new ways to continue making computers smaller, faster and cheaper.
"To transfer more data while using less energy, we need to rethink what's inside these machines," says Liang Feng, PhD, assistant professor in the Department of Electrical Engineering at the University at Buffalo's School of Engineering and Applied Sciences, and the study's co-lead author.
The other co-lead author is Natalia M. Litchinitser, PhD, professor of electrical engineering at UB.
Additional authors are: Pei Miao and Zhifeng Zhang, PhD candidates at UB; Jingbo Sun, PhD, assistant research professor of electrical engineering at UB; Wiktor Walasik, PhD, postdoctoral researcher at UB; and Stefano Longhi, PhD, professor at the Polytechnic University of Milan in Italy, and UB graduate students.
For decades, researchers have been able to cram evermore components onto silicon-based computer chips. Their success explains why today's smartphones have more computing power than the world's most powerful computers of the 1980s, which cost millions in today's dollars and were the size of a large file cabinet.
But researchers are running into a bottleneck in which existing technology may no longer meet society's demand for data. Predictions vary, but many suggest this could happen within the next five years.
Researchers are addressing the matter in numerous ways including optical communications, which uses light to carry information. Examples of optical communications vary from old lighthouses to modern fiber optic cables used to watch television and browse the internet.
Lasers are a central part of today's optical communication systems. Researchers have been manipulating lasers in various ways, most commonly by funneling different signals into one path, to carry more information. But these techniques -- specifically, wavelength-division multiplexing and time-division multiplexing -- are also reaching their limits.
The UB-led research team is pushing laser technology forward using another light manipulation technique called orbital angular momentum, which distributes the laser in a corkscrew pattern with a vortex at the center.
Usually too large to work on today's computers, the UB-led team was able to shrink the vortex laser to the point where it is compatible with computer chips. Because the laser beam travels in a corkscrew pattern, encoding information into different vortex twists, it's able to carry 10 times or more the amount of information than that of conventional lasers, which move linearly.
The vortex laser is one component of many, such as advanced transmitters and receivers, which will ultimately be needed to continue building more powerful computers and datacenters.
###
The research was supported with grants from the U.S. Army Research Office, the U.S. Department of Energy and National Science Foundation.
####
For more information, please click here
Contacts:
Cory Nealon
716-645-4614
Copyright © University at Buffalo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
    Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
Wireless/telecommunications/RF/Antennas/Microwaves
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
Hardware
    The present and future of computing get a boost from new research July 21st, 2023
    A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020
Govt.-Legislation/Regulation/Funding/Policy
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Possible Futures
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Chip Technology
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
    Programmable electron-induced color router array May 14th, 2025
Optical computing/Photonic computing
    ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
    Programmable electron-induced color router array May 14th, 2025
    Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
    Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Nanoelectronics
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
    Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
    Reduced power consumption in semiconductor devices September 23rd, 2022
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Military
    Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
    Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
    Single atoms show their true color July 5th, 2024
    NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Photonics/Optics/Lasers
    ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Research partnerships
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||