Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A new type of quantum bits

Ph.D. student Sascha René Valentin used this equipment to generate quantum dots with electron holes.
CREDIT: RUB, Marquard
Ph.D. student Sascha René Valentin used this equipment to generate quantum dots with electron holes.

CREDIT: RUB, Marquard

Abstract:
n computers of the future, information might be stored in the form of quantum bits. But how can a quantum bit be realised?

A research team from Germany, France and Switzerland has realised quantum bits, short qubits, in a new form. One day, they might become the information units of quantum computers.

A new type of quantum bits

Bochum, Germany | Posted on July 29th, 2016

To date, researchers have realised qubits in the form of individual electrons. However, this led to interferences and rendered the information carriers difficult to programme and read. The group has solved this problem by utilising electron holes as qubits, rather than electrons.

A report has been published in the journal Nature Materials by a team of researchers from Ruhr-Universität Bochum, the University of Basel, and Lyon University; among its contributors were the two Bochum-based researchers Prof Dr Andreas Wieck and Dr Arne Ludwig from the Chair of Applied Solid State Physics. The project was headed by the Swiss researcher Prof Dr Richard Warburton.

Electrons as qubits

In order to realise qubits in the form of electrons, an electron is locked in a tiny semiconductor volume, the so-called quantum dot. The spin turns the electron into a small permanent magnet. Researchers are able to manipulate the spin via an external magnetic field and initiate precession. The direction of the spin is used to code information.

The problem: the nuclear spins of the surrounding atoms also generate magnetic fields, which distort the external magnetic field in a random, unpredictable manner. This, in turn, interferes with programming and reading qubits. Consequently, the team searched for another method. The solution: rather than locking individual electrons in the quantum dot, the team removed specific electrons. Thus, positively charged vacancies were generated in the electron structure, so-called electron holes.

Advantages of electron holes

Electron holes have a spin, too. Researchers can manipulate it via the magnetic field in order to code information. As the holes are positively charged, they are decoupled from the nuclei of the surrounding atoms, which are likewise positively charged. This is why they are virtually immune against the interfering forces of the nuclear spin.

"This is important if we one day want to manufacture reproducible components that are based on quantum bits," explains Andreas Wieck. However, this method is only applicable at low temperatures, as the holes are more likely to be disturbed by warmth than the electrons.

At Ruhr-Universität, researchers are able to generate quantum dots of outstanding quality. The experiment could be conducted thanks to a structural design developed by Arne Ludwig in Basel and subsequently realised at the RUB Department headed by Andreas Wieck. It enabled the researcher to apply not just individual electrons to quantum dots, but also electron holes. Sascha René Valentin, PhD student from Bochum, utilised the technique for the purpose of the current study.

###

Funding

The project was funded by the German Research Foundation (DFG TRR160), The Federal Ministry of Education and Research (Q.com-H 16KIS0109), the European Union in the FP7 Programme (IPN S3NANO), the National Centre of Competence in Research "Quantum Science and Technology" and the Swiss National Science Foundation (200020 156637).

####

For more information, please click here

Contacts:
Andreas Wieck

49-234-322-6726

Copyright © Ruhr-Universität Bochum

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original publication

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Quantum Physics

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Quantum Computing

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project