Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Physicists couple distant nuclear spins using a single electron: For the first time, researchers at the University of Basel have coupled the nuclear spins of distant atoms using just a single electron

Art view of a semiconductor InAs/GaAs quantum dot (In, Ga and As respectively in yellow, blue and purple). Two remote nuclear spins (yellow arrows) are coupled via the spin of an electron delocalized over the quantum dot (red). Image: University of Basel, Department of Physics
Art view of a semiconductor InAs/GaAs quantum dot (In, Ga and As respectively in yellow, blue and purple). Two remote nuclear spins (yellow arrows) are coupled via the spin of an electron delocalized over the quantum dot (red).

Image: University of Basel, Department of Physics

Abstract:
For the first time, researchers at the University of Basel in Switzerland have coupled the nuclear spins of distant atoms using just a single electron. Three research groups took part in this complex experiment, the results of which have now been published in the journal Nature Nanotechnology.

Physicists couple distant nuclear spins using a single electron: For the first time, researchers at the University of Basel have coupled the nuclear spins of distant atoms using just a single electron

Basel, Switzerland | Posted on July 12th, 2016

In most materials, the nuclear spins of neighboring atoms have only a very weak effect on one another, as the tiny nuclei are located deep within the atoms. This is not the case in metals, however, where some of the electrons are able to move freely. The electron spins are able to couple nuclear spins at relatively large distances from one another. Named after four physicists, this RKKY interaction was discovered in the 1950s.

Nuclear spins linked by an individual electron spin

Now, an experiment by researchers from the Department of Physics at the University of Basel has for the first time succeeded in demonstrating this mechanism with a single electron, describing it using quantum theory. The team led by Prof. Richard Warburton trapped a single electron inside a quantum dot. With use of a method developed in Basel to measure nuclear spin resonance, they showed that the electron coupled the spins of nuclei up to five nanometers apart - a huge distance in the world of nuclear spins. The results are particularly relevant to the development of spin qubits: these seek to use electron spins to carry information, but the interaction with the nuclei limits the stability of the quantum information.

Concentrated blast of physics

"This is probably the most complicated experiment our team has ever carried out," says Prof. Richard Warburton, leader of the nano-photonics research group at the Department of Physics in Basel. At the same time, he expressed his delight at the cooperation between the three research groups that made this experiment possible. "There were so many different aspects to take into account - a challenge we were able to master only thanks to the fantastic collaborations in our department."

The research group led by Prof. Martino Poggio provided the expertise in the field of nuclear spin resonance, while the team led by Prof. Daniel Loss spent months computing the quantum theory for the experiment. A vital contribution also came from Ruhr University Bochum, which manufactured the semiconductor chips for the experiment.

####

For more information, please click here

Contacts:
Reto Caluori

41-612-672-495

Copyright © University of Basel

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Quantum Physics

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Quantum nanoscience

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project