Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications

Perovskite nanocrystals (PNCs) dispersed in ethanol under room light and ultraviolet light show better stability of PNCs capped with branching ligands compared to those capped with straight ligands. Photos by Binbin Luo
Perovskite nanocrystals (PNCs) dispersed in ethanol under room light and ultraviolet light show better stability of PNCs capped with branching ligands compared to those capped with straight ligands.

Photos by Binbin Luo

Abstract:
Perovskite materials have shown great promise for use in next-generation solar cells, light-emitting devices (LEDs), sensors, and other applications, but their instability remains a critical limitation.

Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications

Santa Cruz, CA | Posted on June 13th, 2016

Researchers at UC Santa Cruz attacked this problem by focusing on perovskite nanocrystals, in which the instability problems are magnified by the large surface area of the particles relative to their volume. Atoms on the surface are vulnerable to reactions that can degrade the material, so molecules that bind to the surface--called surface ligands or capping ligands--are used both to stabilize perovskite nanocrystals and to control their properties.

In a paper published June 13 in Angewandte Chemie, the UCSC researchers reported the results of experiments using unique branched ligands to synthesize perovskite nanocrystals with greatly improved stability and uniform particle size.

"This new strategy to stabilize organometal-halide perovskites is an important step in the right direction," said corresponding author Jin Zhang, professor of chemistry and biochemistry at UC Santa Cruz. "Our hope is that this could be used not only for perovskite nanocrystals but also for bulk materials and thin films used in applications such as photovoltaics."

Zhang's team tested the effects of different types of capping ligands on the stability of perovskite nanocrystals. Conventional perovskite nanocrystals capped with ligands consisting of long straight-chain amines show poor stability in solvents such as water and alcohol. Zhang's lab identified unique branched molecules that proved much more effective as capping ligands.

According to Zhang, the branching structure of the ligands protects the surface of the nanocrystals by occupying more space than straight-chain molecules, creating a mechanical barrier through an effect known as steric hindrance. "The branching molecules are more cone-shaped, which increases steric hindrance and makes it harder for the solvent to access the surface of the nanocrystals," he said.

The researchers were able to control the size of the nanocrystals by adjusting the amount of branched capping ligands used during synthesis. They could obtain uniform perovskite nanocrystals in sizes ranging from 2.5 to 100 nanometers, with high photoluminescence quantum yield, a measure of fluorescence that is critical to the performance of perovskites in a variety of applications.

Zhang's lab is exploring the use of perovskite nanocrystals in sensors to detect specific chemicals. He is also working with UC Santa Cruz physicist Sue Carter on the use of perovskite thin films in photovoltaic cells for solar energy applications.

The first author of the paper on perovskite nanocrystals is Binbin Luo, a visiting researcher in Zhang's lab. Other coauthors include Ying-Chih Pu at the National University of Tainan, Taiwan; Sarah Lindley, Yi Yang, Liqiang Lu, and Yat Li at UC Santa Cruz; and Xueming Li at Chongqing University, China. This work was supported by NASA and the U.S. Department of Energy.

####

For more information, please click here

Contacts:
Tim Stephens
(831) 459-4352


Jin Zhang


Binbin Luo

Copyright © UC Santa Cruz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Sensors

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Energy

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Aerospace/Space

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project