Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 'Breaking me softly:' UCF fiber findings featured in Nature

"What we expected to see happen is NOT what happened," said UCF Associate Professor Ayman Abouraddy, whose Breaking Me Softly technique is described in the Nature paper. "While we thought the core material would snap into two large pieces, instead it broke into many equal-sized pieces."
CREDIT: UCF
"What we expected to see happen is NOT what happened," said UCF Associate Professor Ayman Abouraddy, whose Breaking Me Softly technique is described in the Nature paper. "While we thought the core material would snap into two large pieces, instead it broke into many equal-sized pieces."

CREDIT: UCF

Abstract:
A finding by a University of Central Florida researcher that unlocks a means of controlling materials at the nanoscale and opens the door to a new generation of manufacturing is featured online today in the journal Nature.

'Breaking me softly:' UCF fiber findings featured in Nature

Orlando, FL | Posted on June 7th, 2016

Using a pair of pliers in each hand and gradually pulling taut a piece of glass fiber coated in plastic, associate professor Ayman Abouraddy found that something unexpected and never before documented occurred -- the inner fiber fragmented in an orderly fashion.
"What we expected to see happen is NOT what happened," he said. "While we thought the core material would snap into two large pieces, instead it broke into many equal-sized pieces."

He referred to the technique in the Nature article title as "Breaking Me Softly."

The process of pulling fibers to force the realignment of the molecules that hold it them together, known as cold drawing, has been the standard for mass production of flexible fibers like plastic and nylon for most of the last century.

Abouraddy and his team have shown that the process may also be applicable to multi-layered materials, a finding that could lead to the manufacturing of a new generation of materials with futuristic attributes.

"Advanced fibers are going to be pursuing the limits of anything a single material can endure today," Abouraddy said.

For example, packaging together materials with optical and mechanical properties along with sensors that could monitor such vital sign as blood pressure and heart rate would make it possible to make clothing capable of transmitting vital data to a doctor's office via the Internet.

The ability to control breakage in a material is critical to developing computerized processes for potential manufacturing, said Yuanli Bai, a fracture mechanics specialist in UCF's College of Engineering and Computer Science.

Abouraddy contacted Bai, who is a co-author on the paper, about three years ago and asked him to analyze the test results on a wide variety of materials, including silicon, silk, gold and even ice.

He also contacted Robert S. Hoy, a University of South Florida physicist who specializes in the properties of materials like glass and plastic, for a better understanding of what he found.

Hoy said he had never seen the phenomena Abouraddy was describing, but that it made great sense in retrospect.

The research takes what has traditionally been a problem in materials manufacturing and turned it into an asset, Hoy said.

"Dr. Abouraddy has found a new application of necking" - a process that occurs when cold drawing causes non-uniform strain in a material, Hoy said. "Usually you try to prevent necking, but he exploited it to do something potentially groundbreaking."

The necking phenomenon was discovered decades ago at DuPont and ushered in the age of textiles and garments made of synthetic fibers. Abouraddy said that cold-drawing is what makes synthetic fibers like nylon and polyester useful. While the parts of those fibers are individually brittle, once cold-drawn, the fibers toughen up and become useful in everyday commodities. This discovery at DuPont at the end of the 1920s ushered in the age of textiles and garments made of synthetic fibers.

Only recently have fibers made of multiple materials become possible, he said. That research will be the centerpiece of a $317 Million U.S. Department of Defense program focused on smart fibers that Abouraddy and UCF will assist with. The Revolutionary Fibers and Textiles Manufacturing Innovation Institute (RFT-MII), led by the Massachusetts Institute of Technology, will incorporate research findings published in the Nature paper, Abouraddy said.

The implications for manufacturing of the smart materials of the future are vast.

By controlling the mechanical force used to pull the fiber and therefore controlling the breakage patterns, materials can be developed with customized properties allowing them to interact with each other and eternal forces such as the sun (for harvesting energy) and the internet in customizable ways.

A co-author on the paper, Ali P. Gordon, an associate professor in the Department of Mechanical & Aerospace Engineering and director of UCF's Mechanical of Materials Research Group said that the finding is significant because it shows that by carefully controlling the loading condition imparted to the fiber, materials can be developed with tailored performance attributes.

"Processing-structure-property relationships need to be strategically characterized for complex material systems. By combining experiments, microscopy, and computational mechanics, the physical mechanisms of the fragmentation process were more deeply understood," Gordon said.

###

Abouraddy teamed up with seven UCF scientists from the College of Optics & Photonics and the College of Engineering & Computer Science (CECS) to write the paper. Additional authors include one researcher each from the Massachusetts Institute of Technology, Nanyang Technological University in Singapore and the University of South Florida.

Authors are Abouraddy, graduate students Joshua J. Kaufman, Guangming Tao and Soroush Shabahang from CREOL- The College of Optics and Photonics at UCF, Yangyang Qiao, Yuanli Bai, Ali P. Gordon and Thomas Bouchenot from the College of Engineering & Computer Science at UCF, Robert S. Hoy from the University of South Florida, Yoel Fink from MIT and Lei Wei from Nanyang University, Singapore.

####

For more information, please click here

Contacts:
Barbara Abney

407-823-5139

Copyright © University of Central Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project