Home > Press > Manipulating light inside opaque layers
![]() |
Experimental setup for measuring light falling on and moving through an opaque layer, using fluorescent microscopy to monitor the results. |
Abstract:
Light propagating in a layer of scattering nanoparticles, shows the principle of diffusion - like tea particles in hot water. The deeper light is penetrating into the layer, the lower the energy density. Scientists of University of Twente’s Complex Photonics Group, however, manage to turn this falling diffusion curve into a rising one, by manipulating the incident light. More light energy inside an opaque layer, is the result, which could lead to solar cells or LED’s with better yields. The results are published in New Journal of Physics.
Even in a medium characterized by randomness, like a collection of non-organized particles that all scatter light, the net spreading of light is uniform. This is typical for diffusion, a phenomenon physicists like Albert Einstein and Adolf Fick already were interested in. We can observe it all around us.
The randomness in the UT experiments exists of a layer of white paint. Light that’s falling on the collection of zinc oxide particles the paint is made of, will be scattered by the particles. It will start interfering with light, scattered from neighbouring particles. Nevertheless, it will spread out in a uniform way. Theoretically, the energy density will show a linear fall-off with penetration depth. The scientists of the Complex Photonics Group (MESA+ Institute for Nanotechnology) did not take this for granted and worked on a way to turn the falling curve into a rising one, thus enhancing the energy level inside the layer. Following the fundamental diffusion curve, the energy density rises until half of the layer and then falls off.
But how to do that without altering the layer? And how to look inside the opaque layer to check if it works? First of all, the scientists don’t alter the layer, but the light. Their ‘wave front shaping’ technique that was developed earlier on, leaves the way open to program the light waves in such a way that they choose the best pathways and show a bright light spot at the backside of the layer. This technique is also suitable for active control of the diffusion process. But how to prove that light moves according to the desired curve? The scientists mix the paint particles with fluorescent nano-size spheres that act as reporters inside the layer. The local energy levels inside the layer are shown by the fluorescent spheres emitting light, with a highly sensitive camera at the backside of the layer measuring total fluorescent intensity.
The measured energy levels highly agree with the enhanced diffusion curve. Thus, significantly more light energy can be entered into a scattering medium. In solar cells, more light would be available for the conversion into electrical energy. White LEDs can be made more cost-effective, and better lasers with a high yield can be developed. In medical applications, better control of the illumination of tissue is possible. First of all, the scientists prove that it is possible to ‘trick’ light inside complex media, which is quite a challenge.
####
For more information, please click here
Contacts:
Wiebe van der Veen
+31612185692
Copyright © AlphaGalileo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Full bibliographic information
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Possible Futures
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Photonics/Optics/Lasers
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Programmable electron-induced color router array May 14th, 2025
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |