Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > ORNL tracks how halogen atoms compete to grow 'winning' perovskites

Oak Ridge National Laboratory scientists combined imaging techniques to measure crystallization kinetics of perovskite films following exposure to a mixed halide vapor. Over time, extra halide reactants settle in the film's grain boundaries, demonstrating atomic competition in crystal growth.
CREDIT: Jill Hemman, Oak Ridge National Laboratory
Oak Ridge National Laboratory scientists combined imaging techniques to measure crystallization kinetics of perovskite films following exposure to a mixed halide vapor. Over time, extra halide reactants settle in the film's grain boundaries, demonstrating atomic competition in crystal growth.

CREDIT: Jill Hemman, Oak Ridge National Laboratory

Abstract:
Researchers at the Department of Energy's Oak Ridge National Laboratory have found a potential path to further improve solar cell efficiency by understanding the competition among halogen atoms during the synthesis of sunlight-absorbing crystals.

ORNL tracks how halogen atoms compete to grow 'winning' perovskites

Oak Ridge, TN | Posted on April 9th, 2016

Photovoltaic cells that convert sunlight directly into electricity are becoming increasingly prominent in the world's renewable energy mix. One promising area of solar energy research involves perovskites, a material that can potentially convert sunlight into electricity more efficiently and less expensively than typical silicon-based semiconductors.

Perovskite-based solar cells, however, have been hindered by unreliable durability, poor efficiency and unresolved questions.

"Organometallic halide perovskite semiconductors have high carrying capacity and efficiency to rival silicon-based solar cells. These materials are easy and cheap to grow but have been known to degrade," said Bin Yang, an ORNL postdoctoral researcher at the Center for Nanophase Materials Science.

A new study published in the Journal of the American Chemical Society demonstrates that in the presence of reactive iodide ions, negatively charged bromine and chlorine are left out of the final perovskite crystal structure - like not making the team in gym class.

"To take that first step and maximize solar cell technology made with organometallic halide perovskites, we need to know how to grow high quality light-absorbing material and establish optimal film growth processes," said Yang, the study's lead author. "The simple printing or spraying of perovskite ink makes solar module costs even lower."

Using high-powered imaging techniques, Yang and the team tracked kinetic activity in organometallic halide perovskites.

Halogen ions, jockeying for a position in the growing structure, affect the movement of charges through the crystals and subsequently impact the efficiency of sunlight's conversion to electricity.

"The kinetic activity found in halide perovskites poses significant challenges for advancing high-efficiency optoelectronic materials and devices," said Kai Xiao, study co-author and ORNL staff scientist.

The team first used X-ray diffraction for a real-time peek at the stages of crystallization, immediately monitoring the chemical reaction between a mixed-halide vapor and a thin lead-iodide film.

ORNL researchers then extracted chemical, molecular and elemental data from the perovskites using time-of-flight secondary ion mass spectrometry for ex-situ analysis. The mass spectrometer's beams of ions provided a snapshot of information about molecular activity on the crystal's surface and established chlorine's eventual distribution in the grain boundaries, or crevices, of perovskite films.

A combination of imaging techniques allowed the ORNL team to track the outcome of the halogen competition in the solar material.

Researchers discovered that while bromine, chlorine and iodine ions facilitate growth in a developing organometallic perovskite structure, only iodine gets a spot in the final crystal. However, though they are left out of the final structure, the molecules build "team morale" as they help promote overall crystal growth.

The measurements offered several insights into perovskite crystallization kinetics that will lead to improvements in the synthesis and processing of the materials for high efficiency solar cells, according to Xiao.

"Identifying the chemical phenomenon of halide competition in hybrid perovskites will help in engineering large-grain perovskite films for better, cheaper solar devices," Xiao said.

###

Co-authors of the study are ORNL's Jong Keum, Olga Ovchinnikova, Alex Belianinov, Mao-Hua Du, Ilia Ivanov, Christopher Rouleau, and David Geohegan, and East China Normal University's Shiyou Chen.

This research was conducted at the Center for Nanophase Materials Sciences (CNMS), which is a DOE Office of Science User Facility. The work was supported by DOE's Office of Science.

####

About Oak Ridge National Laboratory
UT-Battelle manages ORNL for the DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov. -- by Ashanti B. Washington

For more information, please click here

Contacts:
Bill Cabage

865-574-4399

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project