Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Multilingual circuit: NIST's 'optomechanical transducer' links sound, light, radio waves

Acoustic waveguide channels phonons into the optomechanical cavity, enabling the group to manipulate the motion of the suspended nanoscale beam directly.
CREDIT: K. Balram/K. Srinivasan/NIST
Acoustic waveguide channels phonons into the optomechanical cavity, enabling the group to manipulate the motion of the suspended nanoscale beam directly.

CREDIT: K. Balram/K. Srinivasan/NIST

Abstract:
Researchers working at the National Institute of Standards and Technology (NIST) have developed a "piezo-optomechanical circuit" that converts signals among optical, acoustic and radio waves. A system based on this design could move and store information in next-generation computers.

Multilingual circuit: NIST's 'optomechanical transducer' links sound, light, radio waves

Gaithersburg, MD | Posted on March 28th, 2016

The team's work, published in Nature Photonics, also was presented at the March 2016 meeting of the American Physical Society in Baltimore, Md.

While Moore's Law, the idea that the number of transistors on an integrated circuit will double every two years, has proven remarkably resilient, engineers will soon begin to encounter fundamental limits. As transistors shrink, heat and other factors will begin to have magnified effects in circuits. As a result, researchers are increasingly considering designs in which electronic components interface with other physical systems that carry information such as light and sound. Interfacing these different types of physical systems could circumvent some of the problems of components that rely on just one type of information carrier, if researchers can develop efficient ways of converting signals from one type to another (transduction).

For example, light is able to carry a lot of information and typically doesn't interact with its environment very strongly, so it doesn't heat up components like electricity does. As useful as light is, however, it isn't suited to every situation. Light is difficult to store for long periods, and it can't interact directly with some components of a circuit. On the other hand, acoustic wave devices are already used in wireless communications technology, where sound is easier to store for long periods in compact structures since it moves much more slowly.

To address such needs, NIST researchers and their collaborators built a piezoelectric optomechanical circuit on a chip. At the heart of this circuit is an optomechanical cavity, which in their case consists of a suspended nanoscale beam. Within the beam are a series of holes that act sort of like a hall of mirrors for light (photons). Photons of a very specific color or frequency bounce back and forth between these mirrors thousands of times before leaking out. At the same time, the nanoscale beam confines phonons, that is, mechanical vibrations, at a frequency of billions of cycles per second (gigahertz or GHz). The photons and phonons exchange energy so that vibrations of the beam influence the buildup of photons inside the cavity, while the buildup of photons inside the cavity influences the size of the mechanical vibrations. The strength of this mutual interaction, or coupling, is one of the largest reported for an optomechanical system.

One of the researchers' main innovations came from joining these cavities with acoustic waveguides, which are components that route sound waves to specific locations. By channeling phonons into the optomechanical device, the group was able to manipulate the motion of the nanoscale beam directly. Because of the energy exchange, the phonons could change the properties of the light trapped in the device. To generate the sound waves, which were at GHz frequencies (much higher than audible sounds; not even your dog could hear them), they used piezoelectric materials, which deform when an electric field is applied to them and vice versa. By using a structure known as an "interdigitated transducer" (IDT), which enhances this piezoelectric effect, the group was able to establish a link between radio frequency electromagnetic waves and the acoustic waves. The strong optomechanical links enable them to optically detect this confined coherent acoustic energy down to the level of a fraction of a phonon.

They also observed controllable interference effects in sound waves by pitting electrically and optically generated phonons against each other. According to one of the paper's co-authors, Kartik Srinivasan, the device might allow detailed studies of these interactions and the development of phononic circuitry that can be modified with photons.

"Future information processing systems may need to incorporate other information carriers, such as photons and phonons, in order to carry out different tasks in an optimal way," says Srinivasan, a physicist at NIST's Center for Nanoscale Science and Technology. "This work presents one platform for transducing information between such different carriers."

####

For more information, please click here

Contacts:
Mark Esser

301-975-5661

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

K. Balram, M. Davanço¸ J. Dong Song and K. Srinivasan. "Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits." Nature Photonics. March 28, 2016. DOI: 10.1038/nphoton.2016:

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Photonics/Optics/Lasers

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project