Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scratching the surface: Real-time monitoring of surface changes at the atomic level: New tool equals new insights for French research team

Abstract:
A team of researchers at Aix Marseille Université in Marseille, France led by Dr. Frédéric Leroy developed a technique that allows them to follow physical processes occurring at surfaces of materials at the atomic level in situ and in real time. This new process allowed the research team to study the kinetics of decomposition of a thin layer of silicon dioxide deposited onto silicon during a thermal treatment, a critical component in micro-electronics. The approach is based on the principles of electron microscopy.

Scratching the surface: Real-time monitoring of surface changes at the atomic level: New tool equals new insights for French research team

Washington, DC | Posted on March 16th, 2016

Silicon dioxide is one of the most important building blocks of micro-electronics and its thermal stability is critical to device performance. The decomposition of a thin layer of silicon dioxide onto silicon has been the focus of great scientific interest for four decades. Previous studies show that the decomposition occurs non-homogeneously at the surface via the local formation of holes in the oxide layer that extend laterally. Understanding the elementary atomic processes responsible for the opening velocity of these holes is necessary to improve the silicon oxide performance.

For the research team to achieve a better understanding of nanomaterials properties, advanced characterization tools were needed.

"We needed to be able to characterize the structural (crystallography, size, shape) and the chemical properties at the same time and to be able to follow in situ and in real time the changes during a given process for a rapid feedback on the experimental parameters," Leroy explained. "Our approach based on low energy electron microscopy is the corner stone of our achievements."

However, even with the new instrument, the team encountered challenges. Obtaining real time measurements of the thermal decomposition of the silicon dioxide was particularly difficult since the complete process occurs in just a few minutes in a narrow temperature window.

"It was impossible to adjust all control parameters of the electron microscope before the decomposition process started since silicon dioxide is amorphous, so we had to adjust finely the settings within a few seconds as soon as the oxide decomposes in order to characterize the whole process," Leroy explained.

However, the meticulous measurement yielded some surprising results. Leroy and his research team found experimental evidence that the decomposition process was not initially in a steady state regime as previous studies had argued.

"Our results imply that the conventional view of a steady state regime for the silicon dioxide decomposition related to a simplified reaction Si+SiO2-> 2SiO(g) occurring at the hole edge is not generally true," Leroy said. Instead, the team's results imply that silicon dioxide decomposition occurs via hole nucleation and opening with a circular shape. The velocity of holes opening is intimately related to the decomposition rate of silicon dioxide at the periphery of the holes. Initially, large holes open fast thanks to a chemical reaction catalyzed by species such as Si hydroxyls present inside the hole. Researchers suspect these species agglomerate during long thermal annealing and are released inside the holes during the silicon dioxide decomposition.

The main applications of this work are in micro-electronics, particularly all steps of thermal treatments.

"We have shown that the silicon dioxide formed by a wet chemical treatment is highly defective after a long thermal annealing," Leroy said. "The next step in our research is to study the interplay between chemical reactions and the enhancement of the mobility of nanostructures.

####

About American Institute of Physics
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: apl.aip.org

For more information, please click here

Contacts:
AIP Media Line

301-209-3090

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Catalytically enhanced thermal decomposition of chemically grown silicon 2 oxide layers on Si(001)," is authored by F. Leroy, T. Passanante, F. Cheynis, S. Curiotto, E. B. Bussmann and P. Muller. It will be published in the journal Applied Physics Letters March 15, 2016 (DOI:10.1063/1.4941799). After that date, it can be accessed at:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Hardware

The present and future of computing get a boost from new research July 21st, 2023

A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Nanoelectronics

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project