Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > IBS team detects hot electrons in real time: The Center for Nanomaterials and Chemical Reactions fabricated a graphene-semiconductor catalytic nanodiode for improved conductivity of graphene-based nanostructures

Schottky junction between a single layer of graphene and an n-type TiO2 layer lowered potential barrier existing at the Pt NPs/graphene interface, allowing the detection of hot electron flows produced during H2O formation.
CREDIT: IBS
Schottky junction between a single layer of graphene and an n-type TiO2 layer lowered potential barrier existing at the Pt NPs/graphene interface, allowing the detection of hot electron flows produced during H2O formation.

CREDIT: IBS

Abstract:
From converting vehicle exhaust fumes into less harmful gases to refining petroleum, most commercial chemical applications require nanocatalysts since they can reduce the required time and costs by controlling the rate of chemical reactions. The catalytic activity and selectivity largely depends on their physical properties (size, shape, and composition) as well as the electronic characteristics; the dynamics of hot (high energy) electrons on the surface and interface of catalysts. Though the catalyst industry is constantly growing, it's challenging to permit electric currents to nanocatalysts in order to detect hot electrons and measure the catalytic efficiency.

IBS team detects hot electrons in real time: The Center for Nanomaterials and Chemical Reactions fabricated a graphene-semiconductor catalytic nanodiode for improved conductivity of graphene-based nanostructures

Daejeon, Korea | Posted on March 13th, 2016

In a new study, the Institute for Basic Science (IBS) team working under the Center's group leader, Professor PARK Jeong Young, created a catalytic nanodiode composed of a single layer of graphene and titanium film (TiO2) that enabled the detection of hot electrons on platinum nanoparticles (Pt NPs). This breakthrough research developed a catalytic nanodiode that allowed the team to observe in real time the flow of hot electrons generated by chemical reactions. Since hot electrons are created when excess energy from the surface of a chemical reaction is permitted to dissipate in femtosecond, they are deemed as an indicator for the catalystic activity. However, the quick thermalization of hot electrons makes the direct detection of hot electrons quite difficult for clarifying the electronic effect on catalytic activity on metal nanoparticles. In this study, researchers extracted 'hot carriers' from a metal catalyst using a graphene-semiconductor junction.

A new approach

The scientific team experiments differed to previous attempts where gold was used which proved to be inefficient, unstable and expensive. The team from the Center for Nanomaterials and Chemical Reactions experimented on a single layer of graphene, grown on a copper film before being transported to TiO2 where Pt NPs were later deposited. Graphene, the 2D wonder material, was used because of its unique electronic and chemical properties. When integrated with metal NPs, tremendous improvements in the conductivity performance between the supporting material and the platinum NPs were observed by the team. The catalytic activity and amount of hot electrons were measured; the results showed that the catalytic activity and the generation of hot electrons are well-matched and the reaction mechanism can be studied with hot electrons dynamic. "Graphene-based nanostructures, such as ours are promising detectors for the study of hot electron dynamics on metal NPs during the course of catalytic reactions" confirmed the team's paper.

The team's work, according to their paper, highlights the lowered contact resistance at the Pt NPs/ graphene interface is the main characteristic leading to efficient hot electron detection on the nanocatalysts in the graphene- based catalytic nanodiode. By utilizing a single layer of graphene for electrical connection of the Pt NPs it allowed for easier observation of hot electrons because of both the atomically thin nature of graphene and the reduced height of the potential barrier existing at the Pt NPs/ graphene interface. The research conducted at IBS can, potentially, help design catalytic and energy materials with improved performances and lower costs. First author and Ph.D. student Hyosun LEE stated: "Even though there is still the potential for improving the quality of the graphene layer itself and its contact with the TiO2, the approach presented here offers a new way to study the roles of graphene during heterogeneous catalysis."

####

For more information, please click here

Contacts:
Dahee Carol Kim

82-428-788-133

Copyright © Institute for Basic Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Chemistry

Quantum interference in molecule-surface collisions February 28th, 2025

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Graphene/ Graphite

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Automotive/Transportation

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project