Home > Press > New insights into the evaporation patterns of coffee stains: New factors influencing particle deposition via solvent evaporation and relevant to microchips manufacturing have now been elucidated
![]() |
Abstract:
Few of us pay attention to the minutiae of coffee stains' deposition patterns. However, physicists have previously explained the increased deposition of ground coffee particles near the edge of an evaporating droplet of liquid. They attributed it to the collective dynamics of ground coffee grains as the liquid evaporates along the contact line between the liquid coffee and the table. This kind of dynamics also governs microchip production, when particles are deposited on a substrate by means of solvent evaporation. However, until recently, explanations of how such evaporation patterns are formed did not account for the effect of the mutual interactions between electrically charged particles. Now, Diego Noguera-Marín from the University of Granada, Spain, and colleagues have found that particle deposition may be controlled by the interplay between the evaporation of the solvent via convection and the previously identified collective diffusion of suspension nanoparticles. These findings appear as part of an EPJ E topical issue, entitled Wetting and Drying: Physics and Pattern Formation.
In this study, the authors set out to pump out the nanoparticle suspension to study why particle deposition is driven to recede at the contact lines between solvent and substrate. Unlike typical prior experiments focusing on free drop evaporation, the sustained evaporation was, in this case, not tied to the motion of the contact line at the macroscopic scale, between solvent and substrate, which directed the formation of the final deposit. Indeed, this approach makes it possible to keep the particle concentration constant throughout the entire experiment.
When the evaporation flow is weak, the authors found, the deposition of nanoparticles can be suppressed. Then, long-range inter-particle repulsion becomes important. As a result, particle transport is mainly governed by diffusion via convection. However, the diffusion-based flow is only relevant at low particle concentrations, where the concentration gradient between the contact line and the bulk of the nanoparticles suspended in the solvent becomes important.
####
For more information, please click here
Contacts:
Sabine Lehr
49-622-148-78336
Copyright © Springer
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links |
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Possible Futures
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||