Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells

In this time-lapse, retractable protein actuators called "R bodies" - found naturally in certain bacteria - are seen extending from barely-visible tiny coils into long pointy tubes that are capable of rupturing cell membranes. The extension is triggered by a rise in pH level. Wyss Institute researchers have harnessed these structures and are adapting them for use in mammalian cells, which could one day lead to novel mechanisms for delivering drugs and other chemicals of interest. Credit: Wyss Institute at Harvard University
In this time-lapse, retractable protein actuators called "R bodies" - found naturally in certain bacteria - are seen extending from barely-visible tiny coils into long pointy tubes that are capable of rupturing cell membranes. The extension is triggered by a rise in pH level. Wyss Institute researchers have harnessed these structures and are adapting them for use in mammalian cells, which could one day lead to novel mechanisms for delivering drugs and other chemicals of interest.

Credit: Wyss Institute at Harvard University

Abstract:
The ability to control the transfer of molecules through cellular membranes is an important function in synthetic biology; a new study from researchers at Harvard's Wyss Institute for Biologically Inspired Engineering and Harvard Medical School (HMS) introduces a novel mechanical method for controlling release of molecules inside cells.

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells

Boston, MA | Posted on February 12th, 2016

Described in the American Chemical Society Synthetic Biology journal, the team describes using protein polymers known as "R bodies", which are found in certain bacteria, as retractable nanoneedles that can extend to puncture cellular membranes and release molecules on command.

"This is one of nature's innovations, but the discovery here is our ability to translate this from nature into a system that we can now engineer and control," said Wyss Core Faculty member Pamela Silver, Ph.D., who is also Professor of Biochemistry and Systems Biology at HMS, and senior author on the study.

Functioning like a biological actuator, R bodies respond to pH levels to extend from a tightly bound coil to a long, thin structure akin to a nanoscale needle or javelin. In nature, the bacteria containing R bodies are shed by a "killer strain" of single-celled organisms called paramecia. When a paramecium of a different strain ingests these shed bacteria containing R bodies, a difference in pH level between the two strains causes the R bodies to extend and puncture the bacteria's cell walls, releasing toxins that kill the host paramecium. But in synthetic biology, R bodies now represent a whole new way of controlling delivery of beneficial molecules such as biologic therapies, pharmaceutical drugs or other payloads to specific cells.

"Our research establishes R bodies as biological machines that we can use to break through membranes," said Jessica Polka, Ph.D., a Postdoctoral Research Fellow at the Wyss Institute and HMS, who was first author on the study. "These actuators don't consume molecular fuel and are extremely robust; we believe they could one day be used to deliver material to mammalian cells."

Importantly, R bodies present a physical rather than genetic strategy for manipulating cells. At high pH levels, R bodies resemble a coil of ribbon. But at lower pH levels, they undergo a conformational change converting them into pointy hollow tubes capable of puncturing through membranes, breaking that barrier and releasing any cargo contained inside. By modifying the pH level that triggers this response, R bodies become a tunable platform for controlling release of toxins or therapies.

"These R bodies also can be thought of as scaffolds for new biomaterials," said Silver. "By decorating these polymers with different kinds of metals or other materials with properties of interest, we could potentially develop a range of actuator-like, nanoscale structures."

What's also unique about R bodies is their reversibility. Although they extend in low pH, they retract back into a tight coil when the pH level rises. In biological systems, reversibility is not a common property but is of much interest to synthetic biologists like Polka and Silver. Since bacterial and eukaryotic cells all contain compartmentalized membranes, a reversible system for breaking barriers establishes a mechanical strategy for precisely controlling cells.

This advance could potentially lead to a range of applications in biotechnology and medicine such as creation of new programmable biomaterials, drug delivery, and ecosystem management.

"There are so many amazing mechanisms engineered by Nature, and this is a great example of how we can mine living systems for unique biological elements and adapt them to develop programmable technologies for high value applications using synthetic biology," said Wyss Institute Founding Director Donald Ingber, M.D., Ph.D., who is the Judah Folkman Professor of Vascular Biology at HMS and the Vascular Biology Program at Children's Hospital and Professor of Engineering at the Harvard John A. Paulson School of Engineering and Applied Sciences.

####

About Wyss Institute for Biologically Inspired Engineering at Harvard
The Wyss Institute for Biologically Inspired Engineering at Harvard University (wyss.harvard.edu) uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing that are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and formation of new startups. The Wyss Institute creates transformative technological breakthroughs by engaging in high risk research, and crosses disciplinary and institutional barriers, working as an alliance that includes Harvard's Schools of Medicine, Engineering, Arts & Sciences and Design, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Boston Children's Hospital, Dana–Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University, Tufts University, Charité – Universitätsmedizin Berlin, University of Zurich and Massachusetts Institute of Technology.

For more information, please click here

Contacts:
Kat J. McAlpine

617-432-8266

Copyright © Wyss Institute for Biologically Inspired Engineering at Harv

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project