MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa

This is a graphic that describes how the new interface acts as a quantum switch.
CREDIT: S. Kelley/JQI
This is a graphic that describes how the new interface acts as a quantum switch.

CREDIT: S. Kelley/JQI

Abstract:
Scientists have created a crystal structure that boosts the interaction between tiny bursts of light and individual electrons, an advance that could be a significant step toward establishing quantum networks in the future.

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa

College Park, MD | Posted on February 8th, 2016

Today's networks use electronic circuits to store information and optical fibers to carry it, and quantum networks may benefit from a similar framework. Such networks would transmit qubits -- quantum versions of ordinary bits -- from place to place and would offer unbreakable security for the transmitted information. But researchers must first develop ways for qubits that are better at storing information to interact with individual packets of light called photons that are better at transporting it, a task achieved in conventional networks by electro-optic modulators that use electronic signals to modulate properties of light.

Now, researchers in the group of Edo Waks, a fellow at the Joint Quantum Institute and an Associate Professor in the Department of Electrical and Computer Engineering at the University of Maryland, have struck upon an interface between photons and single electrons that makes progress toward such a device. By pinning a photon and an electron together in a small space, the electron can quickly change the quantum properties of the photon and vice versa. The research was reported online Feb. 8, 2016 in the journal Nature Nanotechnology.

"Our platform has two major advantages over previous work," says Shuo Sun, a graduate student at JQI and the first author of the paper. "The first is that the electronic qubit is integrated on a chip, which makes the approach very scalable. The second is that the interactions between light and matter are fast. They happen in only a trillionth of a second -- 1,000 times faster than previous studies."

CONSTRUCTING AN INTERFACE

The new interface utilizes a well-studied structure known as a photonic crystal to guide and trap light. These crystals are built from microscopic assemblies of thin semiconductor layers and a grid of carefully drilled holes. By choosing the size and location of the holes, researchers can control the properties of the light traveling through the crystal, even creating a small cavity where photons can get trapped and bounce around.

"These photonic crystals can concentrate light in an extremely small volume, allowing devices to operate at the fundamental quantum limit where a single photon can make a big difference," says Waks.

The results also rely on previous studies of how small, engineered nanocrystals called quantum dots can manipulate light. These tiny regions behave as artificial atoms and can also trap electrons in a tight space. Prior work from the JQI group showed that quantum dots could alter the properties of many photons and rapidly switch the direction of a beam of light.

The new experiment combines the light-trapping of photonic crystals with the electron-trapping of quantum dots. The group used a photonic crystal punctuated by holes just 72 nanometers wide, but left three holes undrilled in one region of the crystal. This created a defect in the regular grid of holes that acted like a cavity, and only those photons with only a certain energy could enter and leave.

Inside this cavity, embedded in layers of semiconductors, a quantum dot held one electron. The spin of that electron -- a quantum property of the particle that is analogous to the motion of a spinning top -- controlled what happened to photons injected into the cavity by a laser. If the spin pointed up, a photon entered the cavity and left it unchanged. But when the spin pointed down, any photon that entered the cavity came out with a reversed polarization -- the direction that light's electric field points. The interaction worked the opposite way, too: A single photon prepared with a certain polarization could flip the electron's spin.

Both processes are examples of quantum switches, which modify the qubits stored by the electron and photon in a controlled way. Such switches will be the coin of the realm for proposed future quantum computers and quantum networks.

QUANTUM NETWORKING

Those networks could take advantage of the strengths that photons and electrons offer as qubits. In the future, for instance, electrons could be used to store and process quantum information at one location, while photons could shuttle that information between different parts of the network.

Such links could enable the distribution of entanglement, the enigmatic connection that groups of distantly separated qubits can share. And that entanglement could enable other tasks, such as performing distributed quantum computations, teleporting qubits over great distances or establishing secret keys that two parties could use to communicate securely.

Before that, though, Sun says that the light-matter interface that he and his colleagues have created must create entanglement between the electron and photon qubits, a process that will require more accurate measurements to definitively demonstrate.

"The ultimate goal will be integrating photon creation and routing onto the chip itself," Sun says. "In that manner we might be able to create more complicated quantum devices and quantum circuits."

###

In addition to Waks and Sun, the paper has two additional co-authors: Glenn Solomon, a JQI fellow, and Hyochul Kim, a post-doctoral researcher in the Department of Electrical and Computer Engineering at the University of Maryland.

####

About Joint Quantum Institute
The Joint Quantum Institute is operated jointly by the National Institute of Standards and Technology in Gaithersburg, MD and the University of Maryland in College Park.

For more information, please click here

Contacts:
Edo Waks
edowaks@ece.umd.edu

Copyright © Joint Quantum Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Quantum Physics

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Quantum Computing

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Optical computing/Photonic computing

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Quantum nanoscience

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project