Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Lithium battery catalyst found to harm key soil microorganism

Shewanella oneidensis is a ubiquitous, globally distributed soil bacterium. In nature, the microbe thrives on metal ions, converting them to metals like iron that serve as nutrients for other microbes. The bacterium was shown to be harmed by the compound nickel manganese cobalt oxide, which is produced in nanoparticle form and is the material poised to become the dominant material in the lithium ion batteries that will power portable electronics and electric vehicles.

Illustration: Ella Marushchenko/University of Minnesota
Shewanella oneidensis is a ubiquitous, globally distributed soil bacterium. In nature, the microbe thrives on metal ions, converting them to metals like iron that serve as nutrients for other microbes. The bacterium was shown to be harmed by the compound nickel manganese cobalt oxide, which is produced in nanoparticle form and is the material poised to become the dominant material in the lithium ion batteries that will power portable electronics and electric vehicles.

Illustration: Ella Marushchenko/University of Minnesota

Abstract:
The material at the heart of the lithium ion batteries that power electric vehicles, laptop computers and smartphones has been shown to impair a key soil bacterium, according to new research published online in the journal Chemistry of Materials.

Lithium battery catalyst found to harm key soil microorganism

Madison, WI | Posted on February 7th, 2016

The study by researchers at the University of Wisconsin-Madison and the University of Minnesota is an early signal that the growing use of the new nanoscale materials used in the rechargeable batteries that power portable electronics and electric and hybrid vehicles may have untold environmental consequences.

Researchers led by UW-Madison chemistry Professor Robert J. Hamers explored the effects of the compound nickel manganese cobalt oxide (NMC), an emerging material manufactured in the form of nanoparticles that is being rapidly incorporated into lithium ion battery technology, on the common soil and sediment bacterium Shewanella oneidensis.

"As far as we know, this is the first study that's looked at the environmental impact of these materials," says Hamers, who collaborated with the laboratories of University of Minnesota chemist Christy Haynes and UW-Madison soil scientist Joel Pedersen to perform the new work.

NMC and other mixed metal oxides manufactured at the nanoscale are poised to become the dominant materials used to store energy for portable electronics and electric vehicles. The materials, notes Hamers, are cheap and effective.

"Nickel is dirt cheap. It's pretty good at energy storage. It is also toxic. So is cobalt," Hamers says of the components of the metal compound that, when made in the form of nanoparticles, becomes an efficient cathode material in a battery, and one that recharges much more efficiently than a conventional battery due to its nanoscale properties.

Hamers, Haynes and Pedersen tested the effects of NMC on a hardy soil bacterium known for its ability to convert metal ions to nutrients. Ubiquitous in the environment and found worldwide, Shewanella oneidensis, says Haynes, is "particularly relevant for studies of potentially metal-releasing engineered nanomaterials. You can imagine Shewanella both as a toxicity indicator species and as a potential bioremediator."

Subjected to the particles released by degrading NMC, the bacterium exhibited inhibited growth and respiration. "At the nanoscale, NMC dissolves incongruently," says Haynes, releasing more nickel and cobalt than manganese. "We want to dig into this further and figure out how these ions impact bacterial gene expression, but that work is still underway."

Haynes adds that "it is not reasonable to generalize the results from one bacterial strain to an entire ecosystem, but this may be the first 'red flag' that leads us to consider this more broadly."

The group, which conducted the study under the auspices of the National Science Foundation-funded Center for Sustainable Nanotechnology at UW-Madison, also plans to study the effects of NMC on higher organisms.

According to Hamers, the big challenge will be keeping old lithium ion batteries out of landfills, where they will ultimately break down and may release their constituent materials into the environment.

"There is a really good national infrastructure for recycling lead batteries," he says. "However, as we move toward these cheaper materials there is no longer a strong economic force for recycling. But even if the economic drivers are such that you can use these new engineered materials, the idea is to keep them out of the landfills. There is going to be 75 to 80 pounds of these mixed metal oxides in the cathodes of an electric vehicle."

Hamers argues that there are ways for industry to minimize the potential environmental effects of useful materials such as coatings, "the M&M strategy," but the ultimate goal is to design new environmentally benign materials that are just as technologically effective.

####

For more information, please click here

Contacts:
Robert J. Hamers

608-262-6371

Terry Devitt
(608) 262-8282


Robert J. Hamers
(608) 262-6371


Christy Haynes
(612) 626-1096

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Safety-Nanoparticles/Risk management

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

New research may make future design of nanotechnology safer with fewer side effects: Study shows a promising strategy to reduce adverse reactions to nanoparticles by using complement inhibitors October 6th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project