Home > Press > Mechanical quanta see the light
A stylization of the researcher's nanomechanical device. By way of vibrating back-and-forth, the hole-filled silicon beam converts quantum particles of light into quantum vibrations, and later back into light.
Copyright: Jonas Schmöle, The Aspelmeyer Research group, Faculty of Physics, Vienna Center for Quantum Science and Technology (VCQ), University of Vienna |
Abstract:
Quantum physics is increasingly becoming the scientific basis for a plethora of new "quantum technologies". These new technologies promise to fundamentally change the way we communicate, as well as radically enhance the performance of sensors and of our most powerful computers. One of the open challenges for practical applications is how to make different quantum technologies talk to each other. Presently, in most cases, different quantum devices are incompatible with one another, preventing these emerging technologies from linking, or connecting, to one another. One solution proposed by scientists is to build nanometer-sized mechanical objects that vibrate back-and-forth, just like a tiny vibrating tuning fork. These "nanomechanical devices" could be engineered such that their vibrations are the mediator between otherwise different quantum systems. For example, mechanical devices that convert their mechanical vibrations to light could connect themselves (and other devices) to the world's optical fibre networks, which form the Internet. An outstanding challenge in quantum physics has been building a nanomechanical device that convert quantum-mechanical vibrations to quantum-level light, thus allowing one to connect quantum devices to a future quantum Internet.
Researchers led by Simon Gröblacher at TU Delft and Markus Aspelmeyer at the University of Vienna have now realized just such a nanomechanical device. It converts individual particles of light, known as photons, into quantum-mechanical vibrations, known as phonons, and then back again, as reported today in the journal Nature. Traditionally, the probability to first convert a photon into a phonon has been far too small to be useful. But this joint-team applied a trick: Whenever their nanomechanical device first converted a photon to a phonon, their device created a "signalling" photon. By first looking for this signalling photon, the researchers knew exactly when their nanomechanical device had succeeded in the conversion - it had converted light into quantum-mechanical vibrations of their device. Afterwards, using lasers, the researchers then had their device convert its phonon back into light, and emit a photon. Finally, by carefully counting the signalling photons and the emitted photons, the researchers demonstrated that the entire conversion process happened at the quantum level - a single particle at a time. "Not only is this exactly what is necessary to convert and store quantum bits; what I also find amazing," explains Ralf Riedinger, lead author on the study, "is the implications for fundamental physics. We normally think of mechanical vibrations in terms of waves, like waves travelling across a lake, as water vibrates up and down. But our measurements are clear evidence that mechanical vibrations also behave like particles. They are genuine quantum particles of motion. It's wave-particle duality, but with a nano-sized tuning fork."
The nanomechanical device itself is a tiny silicon beam, only half a micrometer wide, and contains a regular pattern of holes, which traps light and mechanical vibrations in the same spot. This nano-sized beam vibrates back-and-forth billions of times each second. It was fabricated at TU Delft by Prof. Gröblacher's team on a silicon chip and uses infrared wavelengths of light, exactly as industry-standard fibre optic networks, integrated electronic, and emerging photonic circuits.
"We clearly also see the long-term technological potential", says Gröblacher. "Such quantum mechanical vibrations could eventually be used as a 'memory' to temporarily store quantum information inside quantum networks or computers." One grand future vision is to establish a quantum Internet in which quantum bits, instead of classical bits, are distributed and processed all around the world. Just like in today's Internet, light will be used for global exchange of quantum information. How it can be converted to a large variety of different quantum devices that will be available for storage and computation remains a major open question. "Our research indicates that nanomechanical devices are a promising candidate to form this link", reflects Gröblacher.
###
The work at the TU Delft is supported by the Foundation for Fundamental Research on Matter (FOM) Projectruimte program. Work at the University of Vienna is supported by the Vienna Science and Technology Fund WWTF, the European Commission, the European Research Council (ERC) Consolidator Grant Program, the DOC fellowship program of the Austrian Academy of Sciences and the Austrian Science Fund FWF.
####
For more information, please click here
Contacts:
Markus Aspelmeyer
43-142-777-2531
Copyright © University of Vienna
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Quantum Physics
Energy transmission in quantum field theory requires information September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
NEMS
IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018
UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018
Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018
One string to rule them all April 17th, 2018
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Quantum Computing
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Quantum nanoscience
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||